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Instructions:

• Write your answers in the question paper itself. Be brief and precise. Answer all questions.

• Write the answers only in the respective spaces provided. The last two blank pages may be
used for rough work or leftover answers.

• In case you may need more space/pages, please ask for additional sheets in the exam hall and
attach the same with this booklet while submitting.

• If you use any theorem / result / formula covered in the class, just mention it, do not elaborate.
(unless the same thing has been explicitly asked to derive / prove in the question)

• Write all the proofs in mathematically / logically precise language. Unclear and/or dubious
statements would be severely penalized.
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Q1. Encode the five English statements given below, into well-formed predicate-logic formulas. Your
encodings should use only the following predicates with the given meanings. (2 × 5)

boy(x) : x is a boy
girl(x) : x is a girl
love(x,y) : x loves y
marry(x,y) : x marries y
diff(x,y) : x and y are different

(a) Every boy who loves a girl does not love every other boy whom that girl loves.
Solution:

∀x∀y
[(

boy(x)∧girl(y)∧ love(x,y)
)
⇒∀z

[(
boy(z)∧diff(x,z)∧ love(y,z)

)
⇒¬love(x,z)

]]

(b) Every boy who loves a girl marries that girl, but not every girl who marries a boy loves that boy.
Solution:

(
∀x∀y

[(
boy(x)∧girl(y)∧ love(x,y)

)
⇒marry(x,y)

])
∧ (

∃x∃y
[
boy(x)∧girl(y)∧marry(y,x)∧¬love(y,x)

])
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(c) Everyone loves either himself/herself or everyone else except himself/herself.

Solution:

∀x
[

love(x,x)
∨
∀y
(

diff(x,y)⇒ love(x,y)
)]

(d) Every girl loves exactly one boy.

Solution:

∀x
[

girl(x)⇒∃y
(

boy(y)∧ love(x,y)
∧
∀z
[(

boy(z)∧diff(y,z)
)
⇒¬love(x,z)

])]

(e) Every boy loves at least two girls.

Solution:

∀x
[

boy(x)⇒∃y∃z
(

girl(y)∧girl(z)∧ love(x,y)∧ love(x,z)∧diff(y,z)
)]
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Q2. Suppose, ρ and σ are two binary relations defined over the set A . A composite relation ρ ◦σ over
A is defined as, ρ ◦σ =

{
(p,r) | there exists some q ∈A , such that (p,q) ∈ ρ and (q,r) ∈ σ

}
.

Prove the following assertions with precise formal justifications.

(a) If ρ and σ are two equivalence relations over A , then prove that ρ ◦σ is an equivalence relation
if and only if ρ ◦σ = σ ◦ρ . (7)
Solution:

[⇒]
Suppose that (x,y) ∈ ρ ◦σ (x,y ∈A ). Since ρ ◦σ is an equivalence relation, we also have
(y,x) ∈ ρ ◦σ (symmetric property). This means that for some α ∈A , we have (y,α) ∈ ρ

and (α,x) ∈ σ . Since ρ and σ are both equivalence relations, we further get (α,y) ∈ ρ and
(x,α) ∈ σ (symmetric property). This means that (x,y) ∈ σ ◦ρ (by definition). Therefore
ρ ◦σ ⊆ σ ◦ρ . Similar arguments (in opposite direction) can be given to prove σ ◦ρ ⊆ ρ ◦σ ,
thereby establishing ρ ◦σ = σ ◦ρ . [2 marks]

[⇐]
– Since ρ and σ are both equivalence relation, (x,x) ∈ ρ as well as (x,x) ∈ σ (for all

x ∈A ). By the definition of composite relations, we immediately have (x,x) ∈ ρ ◦σ ,
proving that ρ ◦σ is reflexive. [1 mark]

– If (x,y) ∈ ρ ◦σ (x,y ∈ A ), then for some α ∈ A , we have (x,α) ∈ ρ and (α,y) ∈
σ . Since ρ and σ are both equivalence relations, we have (α,x) ∈ ρ and (y,α) ∈ σ

(symmetric property). This means that (y,x) ∈ σ ◦ρ (by definition). Finally, ρ ◦σ =
σ ◦ρ implies (y,x) ∈ ρ ◦σ . This proves that ρ ◦σ is symmetric. [2 marks]

– Let x,y,z ∈A . Suppose that (x,y) ∈ ρ ◦σ and (y,z) ∈ ρ ◦σ . Since (x,y) ∈ ρ ◦σ , there
exists α ∈ A such that (x,α) ∈ ρ and (α,y) ∈ σ . Since (y,z) ∈ ρ ◦σ , there exists
β ∈ A such that (y,β ) ∈ ρ and (β ,z) ∈ σ . But then, since (α,y) ∈ σ and (y,β ) ∈ ρ ,
we have (α,β ) ∈ σ ◦ρ (by definition). It is given that σ ◦ρ = ρ ◦σ , so (α,β ) ∈ ρ ◦σ ,
that is, there exist δ ∈ A , such that (α,δ ) ∈ ρ , and (δ ,β ) ∈ σ . Since ρ is transitive,
and (x,α) and (α,δ ) are in ρ , we have (x,δ ) ∈ ρ . Moreover, since σ is transitive, and
(δ ,β ) and (β ,z) are in σ , we have (δ ,z)∈ σ . By definition, we then have (x,z)∈ ρ ◦σ ,
that is, ρ ◦σ is transitive. [2 marks]
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(b) The inverse of a relation τ over A is defined as, τ−1 =
{
(q, p) | (p,q)∈ τ and p,q∈A

}
. Prove

that, (ρ ◦σ)−1 = (σ−1 ◦ρ−1). (4)
Solution:
Let (y,x) ∈ (ρ ◦σ)−1 for x,y ∈A . By definition, (x,y) ∈ (ρ ◦σ), that is, for some α ∈A , we
have (x,α) ∈ ρ and (α,y) ∈ σ . This also implies that (α,x) ∈ ρ−1 and (y,α) ∈ σ−1. Therefore,
(y,x) ∈ σ−1 ◦ρ−1, concluding (ρ ◦σ)−1 ⊆ (σ−1 ◦ρ−1).
On the other hand, let (y,x) ∈ σ−1 ◦ρ−1 for x,y ∈A . Then, for some α ∈A , we have (y,α) ∈
σ−1 and (α,x)∈ ρ−1 (by definition). This also implies that (α,y)∈σ and (x,α)∈ ρ . Therefore,
(x,y) ∈ ρ ◦σ implies (y,x) ∈ (ρ ◦σ)−1, concluding that (σ−1 ◦ρ−1)⊆ (ρ ◦σ)−1.
Together, we prove that, (ρ ◦σ)−1 = (σ−1 ◦ρ−1).
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Q3. (a) Let (G,◦) be a group and c ∈ G. Define a binary composition ∗ on G by a∗b = a◦ c◦b for all
a,b ∈ G. Show that (G,∗) is a group, clearly indicating all the properties of a group. (4)
Solution:
(G,∗) is a group, because it satisfies the following properties of a group.

Closure: For any p,q ∈G, p∗q = p◦c◦q ∈G, as c ∈G and G is closed under the operation ◦.
Associativity: For any p,q,r ∈ G, since G is associative under the operation ◦, we get:

(p∗q)∗ r = (p◦ c◦q)◦ c◦ r = p◦ c◦ (q◦ c◦ r) = p∗ (q∗ r)

Identity: c−1 is the identity element. For any element p ∈ G, we get:

p∗ c−1 = p◦ c◦ c−1 = p◦ eG = p and c−1 ∗ p = c−1 ◦ c◦ p = eG ◦ p = p

where, eG ∈ G is the identity element with respect to the group (G,◦).
Inverse: For any element p ∈ G, let p′ ∈ G be its inverse. Now, by definition we should get

p∗ p′ = c−1 = p′ ∗ p.

∴ p◦ c◦ p′ = c−1 or p′ ◦ c◦ p = c−1 =⇒ p′ = c−1 ◦ p−1 ◦ c−1

where, p−1 is the inverse of p with respect to the operation ◦.
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(b) Let G be a multiplicative group. Prove that, if (ab)2 = a2b2 for all a,b ∈ G, then G is abelian. (3)
Solution:
Take any two elements a,b ∈ G. Since (ab)2 = a2b2, we have

e = (ab)−1(ab)2(ab)−1 = (b−1a−1)(a2b2)(b−1a−1) = b−1aba−1.

This in turn implies that

ba = bea = b(b−1aba−1)a = (bb−1)ab(a−1a) = ab.

Q4. (a) Suppose that L1 and L2 are two languages (over the same alphabet) given to you such that L1
and L1L2 (concatenation) are both regular. Prove or disprove: L2 must be regular too. (3)
Solution:
This is false.
For example, take

L1 = L (a∗) and L2 =
{

ap | p is a prime
}
.

But then,

L1L2 =
{

an | n > 2
}
= L (aaa∗).
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(b) Consider the language, L3 =
{

aib j | i, j ≥ 0 and |i− j| is a prime
}

. (Note that, 1 is not a prime.)
Using the pumping lemma for regular languages, prove that the language L3 is not regular. (4)
Solution:
Suppose that L3 is regular. Let k be a pumping-lemma constant for L3.
Feed the string αβγ = ak+2bk with α = ε , β = ak+2 and γ = bk, to the pumping lemma. We get
a decomposition β = β1β2β3 with 1≤ l = |β2| ≤ k.
Now, take i = 3, that is, pump in β2 twice in αβγ to get the string αβ1β 3

2 β3γ = ak+2+2lbk ∈ L3 .
This is a contradiction, since 2+2l = 2(1+ l) is not a prime.

— Page 7 of 12 —



(c) Consider the language, L4 =
{

α ∈ {a,b}∗
∣∣ |α|= n2 for some integer n≥ 0

}
, where |α| denotes

the length of the string α . Using the pumping lemma for context-free languages, prove that the
language L4 is not context-free. (4)
Solution:
Assume that L4 is context-free, and let n be a pumping lemma (PL) constant for L4. Take
α = an2

. The PL gives us a decomposition α = α1α2α3α4α5 with 0 < |α2α4|= k ≤ n and with
α ′ = α1α2

2 α3α2
4 α5 ∈ L4. But n2 < |α ′|= n2 + k < (n+1)2, a contradiction!

— Page 8 of 12 —



Q5. Consider the language, L5 =
{

α ∈ {0,1,2}∗ | α does not contain two consecutive 0’s
}

.

(a) Describe a regular grammar for L5. (4)
Solution:
The regular grammar G = ({S,T}, {0,1,2}, S, R) for L5 with the rules (R):

S → ε | 0 | 0T | 1S | 2S

T → 1S | 2S

(b) Design a deterministic finite automaton (DFA) to accept L5. (3)
Solution:
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Q6. Consider the language, L6 =
{

a3k+1b5k−2 | k ≥ 1
}
⊆ {a,b}∗.

(a) Write a context-free grammar (CFG) G with L (G) = L6. (4)
Solution:
The trick is to substitute k = l +1 and write L6 as:

L6 =
{

a4+3lb5l+3 | l ≥ 0
}

Now it is easy to write a CFG G = ({S,T}, {a,b}, S, R) for L6 with the rules:

S → aaaaT bbb

T → ε | aaaT bbbbb

Clearly, L (T ) =
{

a3lb5l | l ≥ 0
}

. The rest is obvious.
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(b) Design a push-down automaton (PDA) M with L (M) = L6.[
Hint: You may use CFG-to-PDA conversion procedure.

]
(4)

Solution:
A PDA can be designed for L6 naı̈vely, that is, starting from the scratch.
Now that we have a CFG for L6, it is easier to use the CFG-to-PDA conversion procedure to
construct the following PDA with two states:

— Page 11 of 12 —



Q7. (a) Use a diagonalization argument to prove that the set of all infinite sequences of natural numbers
is uncountable. (3)
Solution:
Let A be the set of all infinite sequences of natural numbers. Suppose that A is countable. Then
there exists a bijective map f : N→ A. Let us denote by f (n) the sequence an0 , an1 , an2 , . . .. We
define an infinite sequence b0, b1, b2, . . . , bn, . . . of natural numbers as follows:

bn =

{
2 if ann = 1,
1 if ann 6= 1.

Since f is bijective, the sequence b0, b1, b2, . . . is equal to f (n) for some n ∈ N. But bn 6= ann

by construction, that is, the sequence b0, b1, b2, . . . is different from f (n), a contradiction!

(b) Prove that the set of all finite sequences of natural numbers is countable. (3)
Solution:
Let C be the set of all finite sequences of natural numbers. We have C =

⋃
n∈N

Cn, where Cn is

the set of all sequences of natural numbers of length n. Since Cn can be viewed as the set Nn of
all (ordered) n-tuples of natural numbers and since Nn is countable for every n ∈ N, each Cn is
countable. Therefore, C is the union of countably many countable sets and so is countable too.
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