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Instructions:

• Write your answers in the question paper itself. Be brief and precise. Answer all questions.

• Write the answers only in the respective spaces provided. The last two blank pages may be
used for rough work or leftover answers.

• In case you may need more space/pages, please ask for additional sheets in the exam hall and
attach the same with this booklet while submitting.

• If you use any theorem / result / formula covered in the class, just mention it, do not elaborate.
(unless the same thing has been explicitly asked to derive / prove in the question)

• Write all the proofs in mathematically / logically precise language. Unclear and/or dubious
statements would be severely penalized.

— Question Paper Starts from Next Page —



Q1. Let C denote the set of complex numbers and Z[i] the subset {a+ ib | a,b ∈ Z} of C. Elements of Z[i]
are called Gaussian integers. For z = x+ iy ∈ C, we denote by |z| the magnitude of z and by argz the
argument of z. Thus, z =

√
x2 + y2 and argz = tan−1

(
y
x

)
. We take argz in the interval [0,2π).

Define a relation ρ on C as follows. Take z1,z2 ∈ C. We say that z1 ρ z2 if and only if

either (i) |z1|< |z2|,
or (ii) |z1|= |z2| and argz1 ≤ argz2.

Moreover, define another relation σ on C as z1 σ z2 if and only if |z1|= |z2|. Answer the following.

(a) Prove that ρ is a partial order on C. (5)
Solution:
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(b) Prove that σ is an equivalence relation on C. (3)
Solution:

(c) What are the equivalence classes of σ? (Provide a geometric description.) (3)
Solution:
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Q2. Consider the context-free grammar G over {a,b}, with start symbol S, non-terminals {S,A,B}, and
the following productions.

S→ aaB | Abb, A→ a | aA, B→ b | bB.

(a) What is the language, L (G), generated by G? (2)
Solution:

(b) Prove that this context-free grammar G is ambiguous. (3)
Solution:

(c) Design an unambiguous context-free grammar for L (G). (3)
Solution:
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Q3. Let M be a Turing machine with one semi-infinite tape and two read/write heads. Each transition of M
is determined by the current state p of the finite control, and the two symbols a and b scanned by the
two heads. A transition of M is of the form δ (p,a,b) = (q,c,d,D1,D2) implying that the finite control
goes to state q, the symbol a at the cell pointed by the first head is replaced by c, and the symbol b
at the cell pointed by the second head is replaced by d. If both the heads point to the same tape cell
(a = b in this case), then the symbol at this cell is replaced by c (not by d unless c = d). Finally, the
first head moves by one cell in direction D1 (left or right), and the second head moves by one cell in
direction D2 (left or right).

Argue that this two-head Turing machine M can be simulated by a standard Turing machine N with
one semi-infinite tape and with only one read/write head. (6)

Solution:
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Q4. Consider the hierarchy of languages shown in the adjacent figure
(right). Place each of the following languages, L1,L2,L3,L4,L5
(given in Parts (a)-(e), respectively) at the proper place in the
hierarchy, that is, state and deduce whether the language Li is:

– Finite
– Regular and Infinite
– Context-Free but Not Regular
– Recursive but Not Context-Free
– R.E. (recursively enumerable) but Not Recursive
– Non-R.E.

Provide clear and proper justifications/deductions for your judg-
ments. No credits will be given for incorrect/incomplete/missing
explanations, even though the truth value is correctly assigned.
In case of justifying Recursive or R.E. languages, construct appropriate Turing machines and/or sup-
ply appropriate reductions (note that, halting may be a choice of Turing machines, so do not use Rice’s
theorem).

(a) L1 = L (G) where grammar G is defined over {a,b}, with start symbol S, non-terminals {S,T},
and the following productions. (4)

S→ ε | abT S, T → ε | T b.

L1 is .

Solution:

— Page 5 of 16 —



(b) The set L2 of all strings α ∈ {a,b,c}∗ containing an equal number of occurrences of a’s, b’s and
c’s. (6)

L2 is .

Solution:
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(c) The complement of L2 (from Part-(b)), that is, L3 = {a,b,c}∗ \L2. (6)

L3 is .

Solution:
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(d) L4 =
{

M |M is a Turing machine that halts on exactly 2024 input strings
}

. (6)

L4 is .

Solution:
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(e) L5 =
{

M |M is a Turing machine that halts on at least 2024 input strings
}

. (6)

L5 is .

Solution:
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Q5. Prove or disprove the following statements (Parts (a)–(e)). Give clear justifications. No credits will be
given for incorrect/incomplete/missing explanations, even though the truth value is correctly assigned.

(a) Prove/Disprove: Let C be an NP-complete problem. If C ∈ co-NP, then NP = co-NP. (6)
Solution:

(b) Prove/Disprove: An O(nk) reduction algorithm from A to B followed by a deterministic O(nk)
algorithm for B yields an O(nk) deterministic algorithm for A.
(Here n is the input size, and k is a positive integer constant > 1.) (4)
Solution:
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(c) Prove/Disprove: The class P is closed under Kleene star, that is, if L ∈ P, then L∗ ∈ P. (8)
Solution:
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(d) Prove/Disprove: The class NP is closed under concatenation, that is, if L1,L2 ∈ NP, then L1L2 ∈ NP. (6)

Solution:
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(e) Prove/Disprove: The class NP-complete is closed under union, that is, if L1, L2 are NP-complete,
then so is L1∪L2. (6)

Solution:
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Q6. Prove or disprove the following assertions (Parts (a)-(b)). Give clear justifications. No credits will be
given for incorrect/incomplete/missing explanations, even though the truth value is correctly assigned.

You may make use of the assumption that NP 6= co-NP, if necessary. Clearly indicate where you
require this assumption.

(a) Prove/Disprove: The following language is NP-complete.

SMALLCYCLE=
{
〈G〉 | The longest cycle in the directed graph G is of length ≤

⌊n(G)

2

⌋}
(Here, n(G) denotes the number of vertices in G and b c is the floor function.) (6)
Solution:
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(b) Prove/Disprove: The following language is NP-complete.

BIGCYCLE=
{
〈G〉 | G is a directed graph having a cycle of length ≥

⌊n(G)

2

⌋}
(Here, n(G) denotes the number of vertices in G and b c is the floor function.) (6)
Solution:
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Q7. An undirected graph is k-colorable if the vertices of the graph can be assigned a colour from a given
fixed set of k colors such that no two adjacent vertices (sharing a common edge in between) receive
the same color. Prove that, the language, 3COLOR=

{
〈G〉 | The undirected graph G is 3-colorable

}
,

is PSPACE-complete if and only if PSPACE = NP.

(Note that, 3COLOR is known to be NP-complete.) (5)

Solution:
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