

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Stamp / Signature of the Invigilator

Indian Institute of Technology Kharagpur Department of Computer Science and Engineering

Instructions:

- Write your answers in the question paper itself. Be brief and precise. Answer *all* questions.
- Write the answers only in the respective spaces provided. The last two blank pages may be used for rough work or leftover answers.
- In case you may need more space/pages, please ask for additional sheets in the exam hall and attach the same with this booklet while submitting.
- If you use any theorem / result / formula covered in the class, just mention it, do not elaborate. (unless the same thing has been explicitly asked to derive / prove in the question)
- Write all the proofs in mathematically / logically precise language. Unclear and/or dubious statements would be severely penalized.

Q1. Let $\mathbb C$ denote the set of complex numbers and $\mathbb Z[i]$ the subset $\{a+ib \mid a,b \in \mathbb Z\}$ of $\mathbb C$. Elements of $\mathbb Z[i]$ are called *Gaussian integers*. For $z = x + iy \in \mathbb{C}$, we denote by |z| the magnitude of z and by arg z the argument of *z*. Thus, $z = \sqrt{x^2 + y^2}$ and $\arg z = \tan^{-1} \left(\frac{y}{x} \right)$ $\left(\frac{y}{x}\right)$. We take arg*z* in the interval $[0, 2\pi)$.

Define a relation ρ on $\mathbb C$ as follows. Take $z_1, z_2 \in \mathbb C$. We say that $z_1 \rho z_2$ if and only if

- either (i) $|z_1| < |z_2|$,
- or (ii) $|z_1| = |z_2|$ and $\arg z_1 \le \arg z_2$.

Moreover, define another relation σ on $\mathbb C$ as $z_1 \sigma z_2$ if and only if $|z_1| = |z_2|$. Answer the following.

(a) Prove that ρ is a partial order on \mathbb{C} . (5)

Solution:

Let $z, z_1, z_2, z_3 \in \mathbb{C}$.

Reflexive: We have $|z| = |z|$ and $\arg z \le \arg z$, that is, $z \rho z$.

- Antisymmetric: Suppose $z_1 \rho z_2$ and $z_2 \rho z_1$. If $|z_1| < |z_2|$, we cannot have $z_2 \rho z_1$. Analogously, if $|z_2| < |z_1|$, we cannot have $z_1 \rho z_2$. Therefore, $|z_1| = |z_2|$. In that case, $\arg z_1 \leq$ $\arg z_2$ and $\arg z_2 \leq \arg z_1$, that is, $\arg z_1 = \arg z_2$. It follows that $z_1 = z_2$.
- **Transitive:** Let $z_1 \rho z_2$ and $z_2 \rho z_3$. This means $|z_1| \leq |z_2| \leq |z_3|$. If $|z_1| < |z_2|$ or $|z_2| < |z_3|$, then $|z_1| < |z_3|$, that is, $z_1 \rho z_3$. If $|z_1| = |z_2| = |z_3|$, we have $\arg z_1 \le \arg z_2 \le \arg z_3$, that is, again *z*¹ ρ *z*3.

Solution:

Let $z, z_1, z_2, z_3 \in \mathbb{C}$. **Reflexive:** Since $|z| = |z|$, we have $z \rho z$. Symmetric: $z_1 \sigma z_2$ implies $|z_1| = |z_2|$, that is, $|z_2| = |z_1|$, that is, $z_2 \sigma z_1$. **Transitive:** $z_1 \sigma z_2$ and $z_2 \sigma z_3$ imply $|z_1| = |z_2| = |z_3|$, that is, $z_1 \sigma z_3$.

(c) What are the equivalence classes of σ ? (Provide a geometric description.) (3) Solution:

Let $z = x + iy \in \mathbb{C}$ with $r = \sqrt{x^2 + y^2}$. Then $[z]_{\sigma}$ consists precisely of all complex numbers whose absolute values equal *r*, that is, $[z]_{\sigma}$ is the circle of radius *r* centered at the origin.

Q2. Consider the context-free grammar *G* over $\{a,b\}$, with start symbol *S*, non-terminals $\{S, A, B\}$, and the following productions.

$$
S \to aaB \mid Abb, \qquad A \to a \mid aA, \qquad B \to b \mid bB.
$$

(a) What is the language, $\mathcal{L}(G)$, generated by G ? (2) Solution:

$$
\mathcal{L}(G) = \left\{ a^2 b^n \mid n \ge 1 \right\} \bigcup \left\{ a^n b^2 \mid n \ge 1 \right\}
$$

(b) Prove that this context-free grammar *G* is *ambiguous*. (3)

Solution:

The string *aabb* has two distinct leftmost derivations:

 $S \Rightarrow aaB \Rightarrow aabB \Rightarrow aabb,$ $S \Rightarrow Abb \Rightarrow aAbb \Rightarrow aabb$.

(c) Design an *unambiguous* context-free grammar for $\mathcal{L}(G)$. (3)

Solution:

In order to disambiguate this grammar, we separate out some small examples.

S → *aab* | *abb* | *aabb* | *aaAbb* | *aaBbb* $A \rightarrow a | aA$ $B \rightarrow b | bB$

Q3. Let *M* be a Turing machine with one semi-infinite tape and two read/write heads. Each transition of *M* is determined by the current state *p* of the finite control, and the two symbols *a* and *b* scanned by the two heads. A transition of *M* is of the form $\delta(p, a, b) = (q, c, d, D_1, D_2)$ implying that the finite control goes to state *q*, the symbol *a* at the cell pointed by the first head is replaced by *c*, and the symbol *b* at the cell pointed by the second head is replaced by *d*. If both the heads point to the same tape cell $(a = b)$ in this case), then the symbol at this cell is replaced by *c* (not by *d* unless $c = d$). Finally, the first head moves by one cell in direction D_1 (left or right), and the second head moves by one cell in direction D_2 (left or right).

Argue that this two-head Turing machine *M* can be simulated by a standard Turing machine *N* with one semi-infinite tape and with only one read/write head. (6)

Solution:

Let Γ be the tape alphabet of *M*. For each $a \in \Gamma$, we introduce three new symbols \overline{a} , *a* and \overline{a} . The tape alphabet of *N* consists of Γ and the three new symbols introduced for each $a \in \Gamma$. The symbol \overline{a} in a cell indicates that the first head of *M* points to this cell which contains the symbol *a*, *a* indicates that the second head of M points to this cell, whereas \overline{a} indicates that both the heads point to this cell. In order to simulate a single move of M , N first locates the two markers \bar{a} and \bar{a} , and remembers the corresponding symbols $a, b \in \Gamma$ in its finite control. *N* now consults the transition function of *M*, replaces *a*, *b* by appropriate symbols *c*, *d*, and moves the markers \bar{a} and as dictated by $\delta(p, a, b)$, where the state *p* of *N* is remembered in the finite control of *M*.

(a) A two-head machine

(b) Simulation by a one-head machine

Q4. Consider the hierarchy of languages shown in the adjacent figure (right). Place each of the following languages, L_1, L_2, L_3, L_4, L_5 (given in Parts (a)-(e), respectively) at the proper place in the hierarchy, that is, state and deduce whether the language *Lⁱ* is:

- Finite
- Regular and Infinite
- Context-Free but Not Regular
- Recursive but Not Context-Free
- R.E. (recursively enumerable) but Not Recursive
- Non-R.E.

Provide clear and proper justifications/deductions for your judgments. No credits will be given for incorrect/incomplete/missing explanations, even though the truth value is correctly assigned.

In case of justifying Recursive or R.E. languages, construct appropriate Turing machines and/or supply appropriate reductions (note that, halting may be a choice of Turing machines, so do not use Rice's theorem).

(a) $L_1 = \mathcal{L}(G)$ where grammar *G* is defined over $\{a, b\}$, with start symbol *S*, non-terminals $\{S, T\}$, and the following productions. (4)

 $S \rightarrow \varepsilon \mid abTS$, $T \rightarrow \varepsilon \mid Tb$.

*L*₁ is Regular and Infinite

Solution:

Proof:

It is an easy matter to check that $\mathscr{L}(T) = b^*$ and it follows that $L_1 = \mathscr{L}(G) = \mathscr{L}(S) = (abb^*)^*$.

(b) The set L_2 of all strings $\alpha \in \{a, b, c\}^*$ containing an equal number of occurrences of *a*'s, *b*'s and $c's.$ (6)

*L*₂ is <u>Recursive but Not Context-Free</u>

Solution:

Proof:

We have, $L_2 = \{ \{a, b, c\}^* \mid v_a(\alpha) = v_b(\alpha) = v_c(\alpha) \}$, where $v_x(\alpha)$ denotes the number of occurrences of $x \in \{a,b,c\}$ in $\alpha \in \{a,b,c\}^*$.

If L_2 is context-free, consider the pumping lemma constant *n* for L_2 (Better use the stronger version of the lemma.) and using the string $a^n b^n c^n \in L_2$ arrive at a contradiction. So L_2 is not context-free.

It is R.E., since we can design a TM M_2 to accept L_2 . One may go for a four-tape machine, where the numbers of occurrences of *a*, *b* and *c* are counted and stored in tapes 2 through 4 as the strings $0^{v_a(\alpha)}$, $0^{v_b(\alpha)}$ and $0^{v_c(\alpha)}$. Subsequently the lengths of these strings can be easily compared. Clearly, M_2 can be so constructed as to halt on every input. Thus L_2 is recursive as well.

(c) The complement of L_2 (from Part-(b)), that is, $L_3 = \{a, b, c\}^* \setminus L_2$. (6)

*L*₃ is Context-Free but Not Regular

Solution:

Proof:

If L_3 is regular, $L_2 = \overline{L_3}$ will also be regular, but by Part (b), L_2 is not even context-free. One can write $L_3 = L_{31} \cup L_{32}$, where L_{31} (resp. L_{32}) consists of all strings $\alpha \in \{a, b, c\}^*$ with $v_a(\alpha) \neq$ $v_b(\alpha)$ (resp. $v_b(\alpha) \neq v_c(\alpha)$). Since context-free languages are closed under union, it is sufficient to show that *L*₃₁ and *L*₃₂ are context-free.

To this end, we can construct a CFG $G = (\{a,b,c\}, \{S,A,B,C,E\}, S, R)$ for L_{31} with the following rules:

 $S \rightarrow A | B$ $E \rightarrow C \mid C a E b C \mid C b E a C \mid E E$ $A \rightarrow CaE$ | *CaA* | *CbAA* $B \rightarrow CbE | CbB | CaBB$ $C \rightarrow \varepsilon | cC$

An analogous CFG for *L*₃₂ can be written.

(d) $L_4 = \{ M \mid M \text{ is a Turing machine that halts on exactly 2024 input strings} \}$

. (6)

 L_4 is $\frac{\text{Non-R.E.}}{\text{Non-R.E.}}$.

Solution:

Proof:

We propose a reduction $\overline{HP} \leq_m L_4$ which maps $M \# \alpha$ to *N* such that *M* does not halt on α if and only if *N* halts on exactly 2024 input strings. The reduction algorithms uses any 2024 constant strings $\gamma_1, \gamma_2, \ldots, \gamma_{2024}$ (distinct from one another). For example, we may have $\gamma_i = 0^i$ for $i = 1, 2, ..., 2024.$

N, upon input β , does the following:

(1) Check whether $\beta = \gamma_i$ for some $i = 1, 2, ..., 2024$. If so, halt (after accepting or rejecting).

(2) Simulate *M* on α .

(3) If the simulation of Step (2) halts, halt (after accepting or rejecting).

It follows that if *M* halts on α , then *N* halts on every input β . On the other hand, if *M* does not halt on α , then *N* halts only on the 2024 input strings $\gamma_1, \gamma_2, \ldots, \gamma_{2024}$.

(e) $L_5 = \{ M \mid M \text{ is a Turing machine that halts on at least 2024 input strings} \}$

*L*₅ is R.E. but Not Recursive

Solution:

Proof:

We can design a Turing machine K that simulates M on all possible input strings on a timesharing basis. If any 2024 of the simulations halt, *K* accepts and halts. If 2024 strings are never found, the parallel simulation of K never stops. Thus, L_5 is recursively enumerable. (Alternatively, *K* can be a non-deterministic Turing machine which simulates *M* on 2024 distinct choices of inputs. The simulations may proceed in parallel or one after another.)

In order to prove that L_5 is not recursive, we make a reduction HP $\leq_m L_5$ that maps $M \# \alpha$ to N such that *M* halts on α if and only if *N* halts on at least 2024 input strings.

N, upon input β , does the following:

- (1) Simulate *M* on α .
- (2) If the simulation of Step (1) halts, halt (after accepting and rejecting).

It follows that if *M* halts on α , then *N* halts on all input strings (in particular, on at least 2024 input strings). On the other hand, if *M* does not halt on α , then *N* does not halt on any input string β .

- Q5. *Prove* or *disprove* the following statements (Parts (a)–(e)). Give clear justifications. No credits will be given for incorrect/incomplete/missing explanations, even though the truth value is correctly assigned.
	- (a) Prove/Disprove: Let *C* be an NP-complete problem. If $C \in \text{co-NP}$, then NP = co-NP. (6) Solution:

This statement is true.

Let *X* be a problem in NP, that is, $X \in \text{NP}$. As *C* is NP-complete, $X \leq_P C$. Now, as per problem statement *C* ∈ co-NP. So, we have *X* ∈ co-NP. This implies, NP \subseteq co-NP.

Let *Y* be a problem in co-NP, that is, $Y \in$ co-NP. So, we have $\overline{Y} \in$ NP. Now, as *C* is NP-complete, *Y* ≤*P C*. Again, as *C* ∈ co-NP, \overline{Y} ∈ co-NP. So, *Y* ∈ NP. This implies, co-NP ⊆ NP.

Both these together *proves* the given assertion.

(b) Prove/Disprove: An $O(n^k)$ reduction algorithm from *A* to *B* followed by a deterministic $O(n^k)$ algorithm for *B* yields an $O(n^k)$ deterministic algorithm for *A*.

(Here *n* is the input size, and *k* is a positive integer constant > 1 .) (4)

Solution:

This statement is false.

Let α be an input of size *n* for *A*. Call the reduction map *f*, that is, $f(\alpha)$ is an input for *B*. Since *f* is computable in time $O(n^k)$, the string $f(\alpha)$ can be of length as big as $O(n^k)$. Subsequent application of the algorithm for *B* then runs in $O((n^k)^k)$, that is, $O(n^{k^2})$, time. For $k > 1$ we have $k^2 > k$.

This statement is true.

Let TM *M* decide *L* in time $p(n)$ (a polynomial).

Given *x* of length *n*, we want to know if $x \in L^*$. We could look at every way to break *x* up into substrings. That would not give a poly time algorithm since there are lots of ways to break up *x* (exercise: how many?).

We will actually solve a "harder" problem: given *x* of length *n*, determine for ALL prefixes of *x*, are they in L^* . This is helpful since when we are trying to determine if, say, $x_1 \cdots x_i \in L^*$, we already know the answers to

 $\varepsilon \in L^*$, $x_1 \in L^*$, $x_1 x_2 \in L^*$, $\dots \dots$, $x_1 x_2 \dots x_{i-1} \in L^*$.

Intuition: $x_1 \cdots x_i \in L^*$ if and only if it can be broken into two pieces, the first one in L^* , and the second in *L*.

We now present the algorithm that will determine if $x \in L^*$. The array A[i] will store if $x_1 \cdots x_i \in L$ *L* ∗ .

```
input x of length n
A[1] = A[2] = ... = A[n] = FALSEA[0] = TRUEfor i = 1 to n do
    for j = 0 to n-1 do
        # Use machine M to test for membership in L
        if A[j] and (x_j, \ldots, x_{i-1}) in L then
            A[i] = TRUE
        endif
    endfor
endfor
output A[n]
```
What is the runtime of the above algorithm? The only time that matters is the calls to *M*. There are $O(n^2)$ calls to *M*, all on inputs of length $\leq n$, hence the runtime is bounded by $O(n^2p(n))$. Since $p(n)$ is a polynomial, $n^2 p(n)$ is also a polynomial.

(d) Prove/Disprove: The class NP is closed under concatenation, that is, if $L_1, L_2 \in \text{NP}$, then $L_1L_2 \in \text{NP}$. (6) Solution:

This statement is true.

For any two NP-languages L_1 and L_2 , let M_1 and M_2 be the NTMs that decide them in polynomial time. We construct a NTM M' that decides the concatenation of L_1 and L_2 in polynomial time.

 $M' =$ "On input *w*,

- (1) Nondeterministically cut *w* into two substrings, $w = w_1w_2$.
- (2) Run M_1 on w_1 .
- (3) Run M_2 on w_2 .
- (4) If both accepts, accept.

Otherwise, continue with the next choice of w_1 and w_2 ."

In both steps, M' uses its non-determinism when the machine is being run. M' accepts w if and only if *w* can be expressed as w_1w_2 such that M_1 accepts w_1 and M_2 accepts w_2 . Therefore, M' decides the concatenation of L_1 and L_2 .

Since Steps 2 and 3 runs in polynomial time and is repeated for at most $O(n)$ time, the algorithm runs in polynomial time.

(e) Prove/Disprove: The class NP-complete is closed under union, that is, if *L*1, *L*² are NP-complete, then so is $L_1 \cup L_2$. (6)

Solution:

This statement is **false**.

We construct a counter example using the following two NP-complete sets.

HAMPATH = ${G | G$ is an undirected graph with a Hamiltonian path $}$

 $SAT = \{\phi \mid \phi \text{ is a satisfiable CNF formula}\}\$

Let

$$
L_1 = \{ (G, \phi) \mid G \in \text{HAMPATH}, \phi \text{ is any CNF formula} \},
$$

and

 $L_2 = \{(G, \phi) \mid G$ is an undirected graph, $\phi \in SAT\}$.

Clearly, L_1, L_2 are both NP-complete, whereas

 $L_1 \cup L_2 = \{(G, \phi) \mid G \text{ is an undirected graph, } \phi \text{ is a CNF formula}\}\$

is not. It can be decided in polynomial time.

Q6. *Prove* or *disprove* the following assertions (Parts (a)-(b)). Give clear justifications. No credits will be given for incorrect/incomplete/missing explanations, even though the truth value is correctly assigned.

You may make use of the assumption that $NP \neq co-NP$, if necessary. Clearly indicate where you require this assumption.

(a) Prove/Disprove: The following language is NP-complete.

$$
SMALLCYCLE = \left\{ \langle G \rangle \mid \text{The longest cycle in the directed graph } G \text{ is of length } \leq \left\lfloor \frac{n(G)}{2} \right\rfloor \right\}
$$

(Here, $n(G)$ denotes the number of vertices in *G* and $\vert \cdot \vert$ is the floor function.) (6) Solution:

This assertion is <u>false</u> (under the assumption $NP \neq co-NP$).

Let us first show that SMALLCYCLE \in co-NP. If $\langle G \rangle$ is not in SMALLCYCLE, then we can convince one about this fact either by indicating that *G* is acyclic or by explicitly providing a cycle in *G* of length $>$ $\frac{n(G)}{2}$ $\frac{a(G)}{2}$. That is a succinct and polynomial time verifiable disqualification for *G*. Now, if **SMALLCYCLE** were NP-complete, we would have NP = co-NP.

(b) Prove/Disprove: The following language is NP-complete.

$$
\mathsf{BIGCYCLE} = \left\{ \langle G \rangle \mid G \text{ is a directed graph having a cycle of length } \ge \left\lfloor \frac{n(G)}{2} \right\rfloor \right\}
$$

(Here, $n(G)$ denotes the number of vertices in *G* and $\lfloor \int$ is the floor function.) (6) Solution:

This assertion is true.

Description of a cycle in G of length $\geq \left\lfloor \frac{n(G)}{2} \right\rfloor$ $\frac{|G\rangle}{2}$ is a succinct certificate for $\langle G \rangle$ to be in BIGCYCLE, that is, BIGCYCLE \in NP.

For proving the NP-hardness, we can show HAMCYCLE ≤*^P* BIGCYCLE, where

HAMCYCLE = ${G \mid G$ is an undirected graph with a Hamiltonian cycle $}.$

Let *G* be an instance for HAMCYCLE with *m* vertices. Add (exactly) *m* isolated vertices to *G*, thereby obtaining a graph G' on $2m$ vertices. It is evident that G' has a cycle of length m (that is, $\geq \left\lfloor \frac{n(G')}{2} \right\rfloor$ $\left. \frac{G'}{2} \right|$), if and only if *G* has a Hamiltonian cycle.

Q7. An undirected graph is *k*-colorable if the vertices of the graph can be assigned a colour from a given fixed set of *k* colors such that no two adjacent vertices (sharing a common edge in between) receive the same color. Prove that, the language, $3\text{COLOR} = \{ \langle G \rangle \mid \text{ The undirected graph } G \text{ is } 3\text{-colorable} \},$ is PSPACE-complete if and only if PSPACE = NP.

(Note that, 3COLOR is known to be NP-complete.) (5)

Solution:

We already know that 3COLOR is NP-complete. Because we have used the same reduction mechanism (polynomial time) for defining completeness in both NP and PSPACE, PSPACE = NP implies that 3COLOR is PSPACE-complete.

For proving the converse, assume that 3COLOR is PSPACE-complete. Take any *L* ∈ PSPACE. By definition, we then have $L \leq_P 3$ COLOR. But then, this reduction followed by an NP algorithm for 3COLOR solves *L* in a nondeterministic polynomial time, implying that $L \in NP$, that is, PSPACE \subseteq NP. The reverse inclusion, NP \subseteq PSPACE, is well-known. Both these together imply, PSPACE = NP.

— Question Paper Ends Here —

— Additional Page 17 —

— Additional Page 18 —