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Instructions:

• Write your answers in the question paper itself. Be brief and precise. Answer all questions.

• Write the answers only in the respective spaces provided. The last two blank pages may be
used for rough work or leftover answers.

• In case you may need more space/pages, please ask for additional sheets in the exam hall and
attach the same with this booklet while submitting.

• If you use any theorem / result / formula covered in the class, just mention it, do not elaborate.
(unless the same thing has been explicitly asked to derive / prove in the question)

• Write all the proofs in mathematically / logically precise language. Unclear and/or dubious
statements would be severely penalized.
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Q1. Let C denote the set of complex numbers and Z[i] the subset {a+ ib | a,b ∈ Z} of C. Elements of Z[i]
are called Gaussian integers. For z = x+ iy ∈ C, we denote by |z| the magnitude of z and by argz the
argument of z. Thus, z =

√
x2 + y2 and argz = tan−1

(
y
x

)
. We take argz in the interval [0,2π).

Define a relation ρ on C as follows. Take z1,z2 ∈ C. We say that z1 ρ z2 if and only if

either (i) |z1|< |z2|,
or (ii) |z1|= |z2| and argz1 ≤ argz2.

Moreover, define another relation σ on C as z1 σ z2 if and only if |z1|= |z2|. Answer the following.

(a) Prove that ρ is a partial order on C. (5)
Solution:
Let z,z1,z2,z3 ∈ C.

Reflexive: We have |z|= |z| and argz≤ argz, that is, z ρ z.
Antisymmetric: Suppose z1 ρ z2 and z2 ρ z1. If |z1| < |z2|, we cannot have z2 ρ z1. Analo-

gously, if |z2| < |z1|, we cannot have z1 ρ z2. Therefore, |z1| = |z2|. In that case, argz1 ≤
argz2 and argz2 ≤ argz1, that is, argz1 = argz2. It follows that z1 = z2.

Transitive: Let z1 ρ z2 and z2 ρ z3. This means |z1| ≤ |z2| ≤ |z3|. If |z1| < |z2| or |z2| < |z3|,
then |z1|< |z3|, that is, z1 ρ z3. If |z1|= |z2|= |z3|, we have argz1 ≤ argz2 ≤ argz3, that is,
again z1 ρ z3.
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(b) Prove that σ is an equivalence relation on C. (3)
Solution:
Let z,z1,z2,z3 ∈ C.

Reflexive: Since |z|= |z|, we have z ρ z.
Symmetric: z1 σ z2 implies |z1|= |z2|, that is, |z2|= |z1|, that is, z2 σ z1.
Transitive: z1 σ z2 and z2 σ z3 imply |z1|= |z2|= |z3|, that is, z1 σ z3.

(c) What are the equivalence classes of σ? (Provide a geometric description.) (3)
Solution:
Let z = x+ iy ∈ C with r =

√
x2 + y2. Then [z]σ consists precisely of all complex numbers

whose absolute values equal r, that is, [z]σ is the circle of radius r centered at the origin.
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Q2. Consider the context-free grammar G over {a,b}, with start symbol S, non-terminals {S,A,B}, and
the following productions.

S→ aaB | Abb, A→ a | aA, B→ b | bB.

(a) What is the language, L (G), generated by G? (2)
Solution:

L (G) =
{

a2bn | n≥ 1
}⋃{

anb2 | n≥ 1
}

(b) Prove that this context-free grammar G is ambiguous. (3)
Solution:
The string aabb has two distinct leftmost derivations:

S⇒ aaB⇒ aabB⇒ aabb,

S⇒ Abb⇒ aAbb⇒ aabb.

(c) Design an unambiguous context-free grammar for L (G). (3)
Solution:
In order to disambiguate this grammar, we separate out some small examples.

S → aab | abb | aabb | aaAbb | aaBbb

A → a | aA

B → b | bB
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Q3. Let M be a Turing machine with one semi-infinite tape and two read/write heads. Each transition of M
is determined by the current state p of the finite control, and the two symbols a and b scanned by the
two heads. A transition of M is of the form δ (p,a,b) = (q,c,d,D1,D2) implying that the finite control
goes to state q, the symbol a at the cell pointed by the first head is replaced by c, and the symbol b
at the cell pointed by the second head is replaced by d. If both the heads point to the same tape cell
(a = b in this case), then the symbol at this cell is replaced by c (not by d unless c = d). Finally, the
first head moves by one cell in direction D1 (left or right), and the second head moves by one cell in
direction D2 (left or right).

Argue that this two-head Turing machine M can be simulated by a standard Turing machine N with
one semi-infinite tape and with only one read/write head. (6)

Solution:

Let Γ be the tape alphabet of M. For each a ∈ Γ, we introduce three new symbols a, a and a. The
tape alphabet of N consists of Γ and the three new symbols introduced for each a ∈ Γ. The symbol a
in a cell indicates that the first head of M points to this cell which contains the symbol a, a indicates
that the second head of M points to this cell, whereas a indicates that both the heads point to this
cell. In order to simulate a single move of M, N first locates the two markers and , and remembers
the corresponding symbols a,b ∈ Γ in its finite control. N now consults the transition function of M,
replaces a, b by appropriate symbols c, d, and moves the markers and as dictated by δ (p,a,b),
where the state p of N is remembered in the finite control of M.

— Page 4 of 16 —



Q4. Consider the hierarchy of languages shown in the adjacent figure
(right). Place each of the following languages, L1,L2,L3,L4,L5
(given in Parts (a)-(e), respectively) at the proper place in the
hierarchy, that is, state and deduce whether the language Li is:

– Finite
– Regular and Infinite
– Context-Free but Not Regular
– Recursive but Not Context-Free
– R.E. (recursively enumerable) but Not Recursive
– Non-R.E.

Provide clear and proper justifications/deductions for your judg-
ments. No credits will be given for incorrect/incomplete/missing
explanations, even though the truth value is correctly assigned.
In case of justifying Recursive or R.E. languages, construct appropriate Turing machines and/or sup-
ply appropriate reductions (note that, halting may be a choice of Turing machines, so do not use Rice’s
theorem).

(a) L1 = L (G) where grammar G is defined over {a,b}, with start symbol S, non-terminals {S,T},
and the following productions. (4)

S→ ε | abT S, T → ε | T b.

L1 is Regular and Infinite .

Solution:
Proof:
It is an easy matter to check that L (T ) = b∗ and it follows that L1 = L (G) = L (S) = (abb∗)∗.
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(b) The set L2 of all strings α ∈ {a,b,c}∗ containing an equal number of occurrences of a’s, b’s and
c’s. (6)

L2 is Recursive but Not Context-Free .

Solution:
Proof:
We have, L2 =

{
{a,b,c}∗ | νa(α) = νb(α) = νc(α)

}
, where νx(α) denotes the number of oc-

currences of x ∈ {a,b,c} in α ∈ {a,b,c}∗.
If L2 is context-free, consider the pumping lemma constant n for L2 (Better use the stronger
version of the lemma.) and using the string anbncn ∈ L2 arrive at a contradiction. So L2 is not
context-free.
It is R.E., since we can design a TM M2 to accept L2 . One may go for a four-tape machine,
where the numbers of occurrences of a, b and c are counted and stored in tapes 2 through 4
as the strings 0νa(α), 0νb(α) and 0νc(α). Subsequently the lengths of these strings can be easily
compared. Clearly, M2 can be so constructed as to halt on every input. Thus L2 is recursive as
well.
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(c) The complement of L2 (from Part-(b)), that is, L3 = {a,b,c}∗ \L2. (6)

L3 is Context-Free but Not Regular .

Solution:
Proof:
If L3 is regular, L2 = L3 will also be regular, but by Part (b), L2 is not even context-free. One can
write L3 = L31∪L32 , where L31 (resp. L32) consists of all strings α ∈ {a,b,c}∗ with νa(α) 6=
νb(α) (resp. νb(α) 6= νc(α)). Since context-free languages are closed under union, it is sufficient
to show that L31 and L32 are context-free.
To this end, we can construct a CFG G =

(
{a,b,c}, {S,A,B,C,E}, S, R

)
for L31 with the

following rules:

S → A | B
E → C |CaEbC |CbEaC | EE

A → CaE |CaA |CbAA

B → CbE |CbB |CaBB

C → ε | cC

An analogous CFG for L32 can be written.
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(d) L4 =
{

M |M is a Turing machine that halts on exactly 2024 input strings
}

. (6)

L4 is Non-R.E. .

Solution:
Proof:
We propose a reduction HP≤m L4 which maps M#α to N such that M does not halt on α if and
only if N halts on exactly 2024 input strings. The reduction algorithms uses any 2024 constant
strings γ1, γ2, . . . , γ2024 (distinct from one another). For example, we may have γi = 0i for
i = 1, 2, . . . , 2024.
N, upon input β , does the following:

(1) Check whether β = γi for some i = 1, 2, . . . , 2024. If so, halt (after accepting or rejecting).
(2) Simulate M on α .
(3) If the simulation of Step (2) halts, halt (after accepting or rejecting).

It follows that if M halts on α , then N halts on every input β . On the other hand, if M does not
halt on α , then N halts only on the 2024 input strings γ1, γ2, . . . , γ2024.
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(e) L5 =
{

M |M is a Turing machine that halts on at least 2024 input strings
}

. (6)

L5 is R.E. but Not Recursive .

Solution:
Proof:
We can design a Turing machine K that simulates M on all possible input strings on a time-
sharing basis. If any 2024 of the simulations halt, K accepts and halts. If 2024 strings are never
found, the parallel simulation of K never stops. Thus, L5 is recursively enumerable. (Alterna-
tively, K can be a non-deterministic Turing machine which simulates M on 2024 distinct choices
of inputs. The simulations may proceed in parallel or one after another.)
In order to prove that L5 is not recursive, we make a reduction HP ≤m L5 that maps M#α to N
such that M halts on α if and only if N halts on at least 2024 input strings.
N, upon input β , does the following:

(1) Simulate M on α .
(2) If the simulation of Step (1) halts, halt (after accepting and rejecting).

It follows that if M halts on α , then N halts on all input strings (in particular, on at least 2024
input strings). On the other hand, if M does not halt on α , then N does not halt on any input
string β .
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Q5. Prove or disprove the following statements (Parts (a)–(e)). Give clear justifications. No credits will be
given for incorrect/incomplete/missing explanations, even though the truth value is correctly assigned.

(a) Prove/Disprove: Let C be an NP-complete problem. If C ∈ co-NP, then NP = co-NP. (6)
Solution:
This statement is true.
Let X be a problem in NP, that is, X ∈ NP. As C is NP-complete, X ≤P C. Now, as per problem
statement C ∈ co-NP. So, we have X ∈ co-NP. This implies, NP ⊆ co-NP.
Let Y be a problem in co-NP, that is, Y ∈ co-NP. So, we have Y ∈ NP. Now, as C is NP-complete,
Y ≤P C. Again, as C ∈ co-NP, Y ∈ co-NP. So, Y ∈ NP. This implies, co-NP ⊆ NP.
Both these together proves the given assertion.

(b) Prove/Disprove: An O(nk) reduction algorithm from A to B followed by a deterministic O(nk)
algorithm for B yields an O(nk) deterministic algorithm for A.
(Here n is the input size, and k is a positive integer constant > 1.) (4)
Solution:
This statement is false.
Let α be an input of size n for A. Call the reduction map f , that is, f (α) is an input for B. Since
f is computable in time O(nk), the string f (α) can be of length as big as O(nk). Subsequent
application of the algorithm for B then runs in O((nk)k), that is, O(nk2

), time. For k > 1 we have
k2 > k.
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(c) Prove/Disprove: The class P is closed under Kleene star, that is, if L ∈ P, then L∗ ∈ P. (8)
Solution:
This statement is true.
Let TM M decide L in time p(n) (a polynomial).
Given x of length n, we want to know if x ∈ L∗. We could look at every way to break x up into
substrings. That would not give a poly time algorithm since there are lots of ways to break up x
(exercise: how many?).
We will actually solve a “harder” problem: given x of length n, determine for ALL prefixes of
x, are they in L∗. This is helpful since when we are trying to determine if, say, x1 · · ·xi ∈ L∗, we
already know the answers to

ε ∈ L∗, x1 ∈ L∗, x1x2 ∈ L∗, · · · · · · , x1x2 · · ·xi−1 ∈ L∗.

Intuition: x1 · · ·xi ∈ L∗ if and only if it can be broken into two pieces, the first one in L∗, and the
second in L.
We now present the algorithm that will determine if x ∈ L∗. The array A[i] will store if x1 · · ·xi ∈
L∗.

input x of length n

A[1] = A[2] = ... = A[n] = FALSE

A[0] = TRUE

for i = 1 to n do

for j = 0 to n-1 do

# Use machine M to test for membership in L

if A[j] and (x_j, ..., x_{i-1}) in L then

A[i] = TRUE

endif

endfor

endfor

output A[n]

What is the runtime of the above algorithm? The only time that matters is the calls to M. There
are O(n2) calls to M, all on inputs of length ≤ n, hence the runtime is bounded by O(n2 p(n)).
Since p(n) is a polynomial, n2 p(n) is also a polynomial.
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(d) Prove/Disprove: The class NP is closed under concatenation, that is, if L1,L2 ∈ NP, then L1L2 ∈ NP. (6)

Solution:

This statement is true.

For any two NP-languages L1 and L2, let M1 and M2 be the NTMs that decide them in polynomial
time. We construct a NTM M′ that decides the concatenation of L1 and L2 in polynomial time.

M′ =“On input w,

(1) Nondeterministically cut w into two substrings, w = w1w2.

(2) Run M1 on w1.

(3) Run M2 on w2.

(4) If both accepts, accept.
Otherwise, continue with the next choice of w1 and w2.”

In both steps, M′ uses its non-determinism when the machine is being run. M′ accepts w if and only
if w can be expressed as w1w2 such that M1 accepts w1 and M2 accepts w2. Therefore, M′ decides the
concatenation of L1 and L2.

Since Steps 2 and 3 runs in polynomial time and is repeated for at most O(n) time, the algorithm runs
in polynomial time.
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(e) Prove/Disprove: The class NP-complete is closed under union, that is, if L1, L2 are NP-complete,
then so is L1∪L2. (6)

Solution:

This statement is false.

We construct a counter example using the following two NP-complete sets.

HAMPATH= {G | G is an undirected graph with a Hamiltonian path}

SAT= {φ | φ is a satisfiable CNF formula}

Let

L1 = {(G,φ) | G ∈ HAMPATH, φ is any CNF formula},

and

L2 = {(G,φ) | G is an undirected graph, φ ∈ SAT}.

Clearly, L1,L2 are both NP-complete, whereas

L1∪L2 = {(G,φ) | G is an undirected graph, φ is a CNF formula}

is not. It can be decided in polynomial time.
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Q6. Prove or disprove the following assertions (Parts (a)-(b)). Give clear justifications. No credits will be
given for incorrect/incomplete/missing explanations, even though the truth value is correctly assigned.

You may make use of the assumption that NP 6= co-NP, if necessary. Clearly indicate where you
require this assumption.

(a) Prove/Disprove: The following language is NP-complete.

SMALLCYCLE=
{
〈G〉 | The longest cycle in the directed graph G is of length ≤

⌊n(G)

2

⌋}
(Here, n(G) denotes the number of vertices in G and b c is the floor function.) (6)
Solution:
This assertion is false (under the assumption NP 6= co-NP).
Let us first show that SMALLCYCLE ∈ co-NP. If 〈G〉 is not in SMALLCYCLE, then we can
convince one about this fact either by indicating that G is acyclic or by explicitly providing a
cycle in G of length >

⌊
n(G)

2

⌋
. That is a succinct and polynomial time verifiable disqualification

for G. Now, if SMALLCYCLE were NP-complete, we would have NP = co-NP.
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(b) Prove/Disprove: The following language is NP-complete.

BIGCYCLE=
{
〈G〉 | G is a directed graph having a cycle of length ≥

⌊n(G)

2

⌋}
(Here, n(G) denotes the number of vertices in G and b c is the floor function.) (6)
Solution:
This assertion is true.

Description of a cycle in G of length≥
⌊

n(G)
2

⌋
is a succinct certificate for 〈G〉 to be in BIGCYCLE,

that is, BIGCYCLE ∈ NP.
For proving the NP-hardness, we can show HAMCYCLE≤P BIGCYCLE, where

HAMCYCLE= {G | G is an undirected graph with a Hamiltonian cycle}.

Let G be an instance for HAMCYCLE with m vertices. Add (exactly) m isolated vertices to G,
thereby obtaining a graph G′ on 2m vertices. It is evident that G′ has a cycle of length m (that is,
≥
⌊

n(G′)
2

⌋
), if and only if G has a Hamiltonian cycle.
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Q7. An undirected graph is k-colorable if the vertices of the graph can be assigned a colour from a given
fixed set of k colors such that no two adjacent vertices (sharing a common edge in between) receive
the same color. Prove that, the language, 3COLOR=

{
〈G〉 | The undirected graph G is 3-colorable

}
,

is PSPACE-complete if and only if PSPACE = NP.

(Note that, 3COLOR is known to be NP-complete.) (5)

Solution:

We already know that 3COLOR is NP-complete. Because we have used the same reduction mecha-
nism (polynomial time) for defining completeness in both NP and PSPACE, PSPACE = NP implies
that 3COLOR is PSPACE-complete.

For proving the converse, assume that 3COLOR is PSPACE-complete. Take any L ∈ PSPACE. By
definition, we then have L ≤P 3COLOR. But then, this reduction followed by an NP algorithm for
3COLOR solves L in a nondeterministic polynomial time, implying that L ∈ NP, that is, PSPACE ⊆
NP. The reverse inclusion, NP ⊆ PSPACE, is well-known. Both these together imply, PSPACE = NP.
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