CS60005 : Foundations of Computing Science (Autumn 2024-2025)

Class Test 2

Write your answers in question paper. Answer <u>all</u> questions. Be brief and mathematically / logically precise.

Q1. Let *M* be a Turing machine with $\mathscr{L}(M) = L$ and with exactly one accept state and exactly one reject state. Construct a Turing machine *N* by swapping the accept and reject states of *M*.

Prove or disprove: $\mathscr{L}(N) = \overline{L}$.

(5)

Solution:

The assertion is *false* in general. Consider the pairwise disjoint languages:

 $L_{a} = \{ \alpha \in \Sigma^{*} \mid M \text{ accepts } \alpha \}$ $L_{r} = \{ \alpha \in \Sigma^{*} \mid M \text{ rejects } \alpha \text{ after halting} \}$ $L_{l} = \{ \alpha \in \Sigma^{*} \mid M \text{ loops on } \alpha \}$

Then $\mathscr{L}(M) = L_a$, $\mathscr{L}(N) = L_r$, and $L_a \cup L_r \cup L_l = \Sigma^*$. Unless $L_l = \phi$, we cannot say $\mathscr{L}(N) = \overline{L}$.

Q2. Prove or disprove: The language recognized by the Turing machine shown below is Turing-decidable.

(5)

Solution:

The language, call it L, is Turing-decidable. In fact, L is the language of the regular expression 10^* . We know that regular languages are Turing-decidable.

[The given TM is not a decider for L, since it does not halt, for example, on the input 101. A decider for L is given below:

For solving this exercise, designing such a decider is not necessary.

Q3. Prove that Turing-recognizable languages are closed under union.

Solution:

Let $L_1 = \mathscr{L}(M_1)$ and $L_2 = \mathscr{L}(M_2)$ be two Turing-recognizable languages, where M_1 and M_2 are TMs. Let us design a TM M with $\mathscr{L}(M) = L_1 \cup L_2$. M runs M_1 and M_2 in "parallel". M may be designed as a two-tape machine. To start with M copies the input α to the second tape and positions both the heads at the beginning of the respective copies of the input. M simulates the behavior of M_1 on the first tape and that of L_2 on the second tape *simultaneously*. M accepts if and only if either the simulation of M_1 or that of M_2 accepts. If both M_1 and M_2 reject α after halting, then M also rejects. If one of M_1 and M_2 rejects after halting and the other by not halting, or if both M_1 and M_2 reject by not halting, then M rejects by not halting. **Q4.** Let $L_1, L_2, ..., L_n$ be pairwise disjoint Turing-recognizable languages over the same alphabet Σ . Suppose that $\bigcup_{i=1}^{n} L_i = \Sigma^*$. Prove that each L_i is Turing-decidable. (5)

Solution:

From Q3, Turing-recognizable languages are closed under finite union. It follows that $\bigcup_{\substack{1 \le j \le n \\ j \ne i}} L_j$ is

Turing-recognizable, that is, $\overline{L_i}$ is Turing-recognizable. Since L_i is also Turing-recognizable, it follows that L_i is Turing-decidable.

- End of Question Paper -