
CS60050: Foundations of Computing Science Autumn, 2022

Tutorial 9

Space Complexity

1. Show that

(a) PSPACE is closed under union, intersection, complement and Kleene Closure.

Solution: Let L1, L2 ∈ PSPACE and let M1,M2 be deterministic TMs deciding L1, L2

respectively in polynomial space. We describe constructions of DTMs running in polynomial
space for the following languages.

L1 ∪ L2: On input x, run M1 on x. If it accepts, then accept. Otherwise, run M2 on x.
If it accepts, then accept; else reject.

L1 ∩ L2: On input x, run M1 on x and then run M2 on x. If both accept, then accept;
otherwise reject.

Lc
1: On input x, run M1 on x and negate its output. (This can be done since M is

deterministic).

L∗1: Observe that x ∈ L∗1 iff one of the following holds: x = ε, x ∈ L1, x = wz such that
w ∈ L∗1 and z ∈ L∗1. Let x = x1x2 · · ·xn and let xi,j (for 1 ≤ i ≤ j ≤ n) denote
the substring xixi+1 · · ·xj of x. We will use dynamic programming to build a matrix
T = (ti,j) with ti,j = 1 if xi,j ∈ L∗1 and 0 otherwise. Essentially we consider all
substrings of x, starting with substrings of length 1 and ending with all substrings of
length n. Below is the pseudocode:

Input: x = x1 · · ·xn

Initialise ti,j to 0.

If x = ε, then accept;

For k = 1, . . . , n:
For i = 1, . . . , n− k + 1:
j = i+ k − 1;
Run M1 on xi,j;
If M1 accepts , then set ti,j = 1;
Else

For ` = i, . . . , j − 1:
If ti,` = 1, and t`+1,j = 1, then set ti,j = 1;

If t1,n = 1, then accept; Else reject;

We now analyze the space complexity of the above algorithm. In each inner loop,
we run M1 once which takes polynomial space (since L1 ∈ PSPACE). Storing T
requires O(n2)-space and each execution of the loop requires constant number of cells
to store the indices. Hence the algorithm runs in polynomial space.

Alternatively, using the fact that PSPACE = NPSPACE, we can define a poly-
space NDTM that decides L∗1 that guesses an index in x; checks whether x1,i ∈ L1

using M1 and then recursively checks whether xi+1,n ∈ L∗1.

It is easy to verify that the first three run in polynomial space.

(b) NL is closed under union, intersection and Kleene Closure.

Solution: Union and intersection can be dealt with similar to the previous question.

For any language L ∈ NL, we show that L∗ ∈ NL. Let M be an NDTM deciding L in
logarithmic space. We show how to construct an NDTM deciding L∗. Let x = x1 · · ·xn ∈ Σ∗.
If x = ε, then accept. Otherwise, non-deterministically choose i ∈ {1, . . . , n} and let
w = x1 · · ·xi, z = xi+1 · · ·xn. Run M with w as the input. If M accepts, then recursively
check if z ∈ L∗. Else, reject.

The above algorithm always correctly determines if x ∈ L∗. If x ∈ L∗, then x can be written
as w1w2 · · ·wk for some k such that |wj | ≥ 1 for each j. Therefore, there exists a sequence
of guesses leading to w1, . . . , wk in that order. Suppose that x /∈ L∗. Then for any w with
|w| ≥ 1 such that x = wz, either w /∈ L or z /∈ L∗ and so all branches of computation of the
NDTM are rejecting. Furthermore, guessing a prefix only takes logarithmic space, that is
to index into a position in x. Checking whether w ∈ L takes logarithmic space sinceM is a
logspace machine. Once w is checked, it does not have to be remembered for the recursive
calls. Hence, x ∈ L∗ can be checked in log space and as a consequence L∗ ∈ NL.

2. A ladder is a sequence of strings s1, s2, . . . , sk, wherein every string differs from the
preceding one in exactly one character. For example, the following is a ladder of English
words, starting with “head” and ending with “free”: head, hear, near, fear, bear, beer,
deer, deed, feed, feet, fret, free. Let

LADDERDFA = {〈M, s, t〉 : M is a DFA and L(M) consists of a ladder of strings

starting with s and ending with t},

where s, t ∈ Σ∗ and M is defined over the input alphabet Σ. Show that LADDERDFA is
in PSPACE.

Hint: Use the fact that PSPACE = NPSPACE.

Solution: Since NPSPACE = PSPACE, it suffices to show that LADDERDFA ∈ NPSPACE.
We describe a non-deterministic algorithm that decides LADDERDFA. Given an instance 〈M, s, t〉,
reject if |s| 6= |t|. Otherwise, consider a graph G whose vertices are labeled with strings in Σ|s|.
There is a directed edge from vertex u to vertex v if u and v differ in exactly one character
and u, v ∈ L(M). Then, 〈M, s, t〉 ∈ LADDERDFA iff there is a path from s to t in G. This
can be checked non-deterministically in polynomial space (although G has exponential number
of vertices) – guess the path, storing at each step only the label of the current vertex (which
is of size |s|). At step, say starting at vertext u, non-deterministically choose a new vertext v
connected to u via an edge and check if M accepts v.

To ensure that the machine always halts, maintain a counter which is incremented after each
guess. Reject and halt when the counter crosses |Σ||s|. Since any path from s to t (without loops)
can be of length at most |Σ||s|.

3. In the generalised version of the game Tic-Tac-Toe, 2 players places marks X (crosses)
and O (noughts) on an m × n grid. A player wins if she is the first to place k marks
in a row, column or diagonal. The game ends in a draw if no such sequence is present
when all the mn cells of the grid are filled. Assuming that X always starts, show that
the language

GTICTACTOE = {〈m,n, k, c〉 : c is an intermediate configuration on the m× n board with

next move by X and ∃ a winning strategy for X}

Page 2

is in PSPACE.

Solution: Given an instance 〈m,n, k, c〉, we will describe a recursive procedure to check if there
exists a winning strategy for X. The validity of c may be checked in polynomial space by checking
that there are equal number of crosses and noughts. Further, it is possible to check that the game
has not already ended by determining whether there exists a series of k crosses or noughts in
a row, column or diagonal (this would take O(nm)-space since there are nm possible cells and
k < min{m,n}). This as well can be done in polynomial space. If there are k consecutive X
marks, then accept. If there are k consecutive marks of both X and O or only O, reject. If there
is no unoccupied cell, then reject. Otherwise, repeat the following for each unoccupied cell u in
configuration c: Put the marker X on u. If the resulting configuration d is a winning configuration
for X then accept. If the grid is completely filled, then reject. Otherwise, generate configurations
e1, e2, . . . , e` obtained by marking exactly one unoccupied cell in d with O. Make a recursive call
on each ei, reusing the space for each call. If all the calls return ‘accept’, then accept. Otherwise,
continue with checking a different unoccupid cell in c. If all the configurations d lead to rejection,
then reject. Each recursion requires remembering c, d, ei at a time; checking whether there are k
consecutive X marks ina row/column/diagonal requires O(nm)-space; the depth of the recursion
is O(mn). Based on these observations it is straightforward to see that the procedure requires
space O(m2n2)-space thus implying that GTICTACTOE ∈ PSPACE.

4. Let polyL = ∪c>0DSPACE(logc n). Let SC (named after Stephen Cook) be the class
of languages that can be decided by deterministic machines that run in polynomial time
and logc n space for some c > 0.

(a) It is an open problem whether PATH ∈ SC. Why does Savitch’s theorem not resolve
this question?

Solution: We know that PATH ∈ P – simply use breadth-first search. We also
know that it is in NL – nondeterministically guess a path from the source to the
target vertex, keeping track of the current vertex at each step, thus taking logarithmic
space. By Savitch’s theorem, we have NSPACE(S(n)) ⊆ DSPACE(S(n)2) and hence
PATH ∈ NL = NSPACE(log n) ⊆ DSPACE(log2 n) ⊆ polyL. The property that
NSPACE(log n) ⊂ DTIME(2logn) = DTIME(n) is not preserved by Savitch’s theorem.
That is, the transformation used in Savitch’s theorem to transform a non-deterministic
log n-space algorithm to a deterministic log2 n-space algorithm does not ensure that the
resulting algorithm runs in polynomial time. Since DSPACE(log2 n) ⊂ DTIME(2log

2 n) =
DSPACE(nlogn), all we can say about a language in DSPACE(log2 n) is that there exists
a TM deciding it running in time at most nlogn which is not polynomial in n.

(b) Is SC = polyL ∩P?

Solution: Clearly, it holds that SC ⊆ polyL ∩P. The other direction is not necessarilily
true. For any language L ∈ polyL ∩ P, we can say that there exist Turing machines
M1,M2 running in polylogarithmic space and polynomial time respectively that decide
membership in L. This does not imply that there exists a single Turing machine that runs
(simultaneously) in polynomial time and polylogarithmic space.

5. Show that 2SAT is in NL.

Solution: Consider a 2SAT instance φ = ∧mi=1(xi ∨ yi) over variables u1, . . . , un. Let G be a
graph with 2n vertices corresponding to the literals ui,¬ui for each i. For each clause x∨ y, add
directed edge (¬x, y) and (¬y, x) to G, so that (v, w) is an edge in G iff ¬v ∨ w is a clause in φ.

Page 3

The edge (¬x, y) indicates that if x = 1 then y must be 1 in order to satisfy the clause x ∨ y.
Note that G can be constructed in logarithmic space.

Let v, w be arbitrary vertices in G. If G contains a path from v to w, the there must exist one
from ¬w to ¬v. Let the path be w → z1 → · · · → zk → v. By our construction, edges ¬v → ¬zk,
¬zj → ¬zj−1 (for j ∈ [2, k]) and ¬z1 → w also belong to G. Hence there is a path from ¬w to
¬v.

We now claim that φ is unsatisfiable iff there exists a variable u such that there are paths from
u to ¬u and from ¬u to u. Suppose, for the sake of contradiction that, there exist paths u→ ¬u
and ¬u → u and φ has a satisfying assignment with u = 1 (the case u = 0 can be analysed
similarly). Let u→ · · · v → w · · · → ¬u be the path from u to ¬u. Since u = 1, all literals in the
path u to w must be true. Similarly, since ¬u = 0, all literals in the path from w to ¬u must be
false. Since there is an edge (v, w) and v = 1 and w = 0, the clause ¬v ∨ w is not satisfied, thus
contradicting our assumption that φ is satisfiable.

Hence checking for the existence of paths u → ¬u and ¬u → u will determine whether or not φ
is satisfiable. We know that PATH is in NL and we need polynomially many queries to PATH.
Therefore, 2SAT ∈ NL. Note that this simultaneously shows that 2SAT and 2SAT are in NL
since NL = coNL.

Page 4

