Tutorial 9

Space Complexity

- 1. Show that
 - (a) **PSPACE** is closed under union, intersection, complement and Kleene Closure.
 - (b) **NL** is closed under union, intersection and Kleene Closure.
- 2. A <u>ladder</u> is a sequence of strings s_1, s_2, \ldots, s_k , wherein every string differs from the preceding one in exactly one character. For example, the following is a ladder of English words, starting with "head" and ending with "free": head, hear, near, fear, bear, beer, deer, deed, feed, feet, fret, free. Let

LADDER_{DFA} = { $\langle \mathcal{M}, s, t \rangle$: \mathcal{M} is a DFA and $L(\mathcal{M})$ consists of a ladder of strings starting with s and ending with t},

where $s, t \in \Sigma^*$ and \mathcal{M} is defined over the input alphabet Σ . Show that LADDER_{DFA} is in **PSPACE**.

Hint: Use the fact that PSPACE = NPSPACE.

3. In the generalised version of the game Tic-Tac-Toe, 2 players places marks X (crosses) and O (noughts) on an $m \times n$ grid. A player wins if she is the first to place k marks in a row, column or diagonal. The game ends in a draw if no such sequence is present when all the mn cells of the grid are filled. Assuming that X always starts, show that the language

GTICTACTOE = $\{\langle m, n, k, c \rangle : c \text{ is an intermediate configuration on the } m \times n \text{ board with }$ next move by X and \exists a winning strategy for $X\}$

is in **PSPACE**.

- 4. Let $\mathbf{polyL} = \bigcup_{c>0} \mathbf{DSPACE}(\log^c n)$. Let \mathbf{SC} (named after Stephen Cook) be the class of languages that can be decided by deterministic machines that run in polynomial time and $\log^c n$ space for some c>0.
 - (a) It is an open problem whether $\mathsf{PATH} \in \mathbf{SC}$. Why does Savitch's theorem not resolve this question?
 - (b) Is $SC = polyL \cap P$?
- 5. Show that 2SAT is in **NL**.