Tutorial 9

Space Complexity

1. Show that

(a) PSPACE is closed under union, intersection, complement and Kleene Closure.
(b) $\mathbf{N L}$ is closed under union, intersection and Kleene Closure.
2. A ladder is a sequence of strings $s_{1}, s_{2}, \ldots, s_{k}$, wherein every string differs from the preceding one in exactly one character. For example, the following is a ladder of English words, starting with "head" and ending with "free": head, hear, near, fear, bear, beer, deer, deed, feed, feet, fret, free. Let

$$
\begin{gathered}
\operatorname{LADDER}_{D F A}=\{\langle\mathcal{M}, s, t\rangle: \mathcal{M} \text { is a DFA and } L(\mathcal{M}) \text { consists of a ladder of strings } \\
\text { starting with } s \text { and ending with } t\},
\end{gathered}
$$

where $s, t \in \Sigma^{*}$ and \mathcal{M} is defined over the input alphabet Σ. Show that $\operatorname{LADDER}_{D F A}$ is in PSPACE.

Hint: Use the fact that PSPACE $=$ NPSPACE .
3. In the generalised version of the game Tic-Tac-Toe, 2 players places marks X (crosses) and O (noughts) on an $m \times n$ grid. A player wins if she is the first to place k marks in a row, column or diagonal. The game ends in a draw if no such sequence is present when all the $m n$ cells of the grid are filled. Assuming that X always starts, show that the language

GTICTACTOE $=\{\langle m, n, k, c\rangle: c$ is an intermediate configuration on the $m \times n$ board with next move by X and \exists a winning strategy for $X\}$
is in PSPACE.
4. Let polyL $=\cup_{c>0} \mathbf{D S P A C E}\left(\log ^{c} n\right)$. Let $\mathbf{S C}$ (named after Stephen Cook) be the class of languages that can be decided by deterministic machines that run in polynomial time and $\log ^{c} n$ space for some $c>0$.
(a) It is an open problem whether PATH $\in \mathbf{S C}$. Why does Savitch's theorem not resolve this question?
(b) Is $\mathbf{S C}=\mathbf{p o l y L} \cap \mathbf{P}$?
5. Show that 2SAT is in NL.

