
CS60050: Foundations of Computing Science Autumn, 2022

Tutorial 7

(Un)Decidability, Rice’s Theorem

1. Show that the set {M|M is a DFA not accepting any string with odd number of 1’s} is
decidable.
Hint: For a DFA M, the problem of whether or not L(M) = ∅ is decidable.

Solution: We will use the fact that the emptiness problem for DFAs is decidable (just compute
the set of states that are reachable from the start state and accept if any final state belongs to
this set). In other words, there exists a TM N that decides {M |M is a DFA and L(M) = ∅}.
Let

B = {M |M is a DFA not accepting any string with odd number of 1’s}.

Define a set A = {x ∈ Σ∗|x contains an odd number of 1’s} and letMA denote a DFA recognising
A.

Define a TM K that, on input a DFA M, does the following:

• Construct a DFAM′ that accepts L(M)∩L(MA) (here, the description ofMA is hardwired
in K’s finite control).

• Run N on input M′.

• Accept if N accepts; reject otherwise.

K accepts B since L(M) ∩ A is empty iff M does not accept any string with odd number of
1’s. Since both A and L(M) are regular (the latter follows from the fact that M is a DFA)
and regular sets are closed under intersection, the construction of M′ accepting L(M)∩L(MA)
can be done in finite time. To be more precise, such a product construction can be done in time
O(|M| · |MA|) time, where |M| denotes the size of representation of M. Hence K is total and
decides B.

2. Recall the definition of linear bounded automaton (LBA) and that the halting problem
for LBA is decidable. Prove by diagonalisation that there exists a recursive set that is
not accepted by any LBA.

Solution: Similar to TMs, we can define an encoding using bit strings for LBAs. Let
Mε,M0,M1,M00,M01, . . . denote LBA’s described according to this encoding. If a string x
is not a valid description of an LBA, set Mx to be a trivial LBA that accepts and halts on all
inputs. Construct an infinite matrix A = (ax,y)x,y=ε,0,1,00,01,... as

ax,y =

{
1 if y ∈ L(Mx)
0 if y /∈ L(Mx)

Now consider a set B defined as B = {x | x /∈ L(Mx)}. The characteristic function for this set
corresponds to the complement of the diagonal of A. As for each x ∈ {0, 1}∗, B differs from
L(Mx) atleast on x, no LBA accepts B. We now prove that B is recursive by building a total
TM N accepting B. Below is the description of N .

N : on input y

• Construct My from y.

• Simulate My on input y.

• If My accepts and halts, then reject and halt.

• If My rejects or loops, then accept and halt.

Using the fact that it is possible to check whether an LBA loops or not in finite time, we conclude
that the TM N halts on all inputs and is hence total.

Note: Here I have indexed the automata with strings. You can use the natural numbers as index
and refer to the LBA corresponding to a string x as Mη(x) where η : {0, 1}∗ → N is an injective
map. Such a map exists since {0, 1}∗ is a countable set.

3. True or False? It is decidable whether two given TMs accept the same set.

Solution: The problem is to show that the language EQUIV = {(M1,M2)|L(M1) = L(M2)}
is undecidable. We show a reduction from the halting problem i.e., HP ≤m EQUIV. Given an
instance (M, x) of HP, construct an instance (M1,M2) such thatM1 andM2 have the following
descriptions.

M1: on input y does the following

• Erase the input y.

• Accept and halt.

M2: on input y does the following

• Erase the input y.

• Run M on x.

• Accept and halt if M halts on x.

Clearly, L(M1) = Σ∗ and

L(M2) =

{
Σ∗ if M halts on x
∅ otherwise

That is (M, x) ∈ HP iff (M1,M2) ∈ EQUIV. The descriptions of M1,M2 can be written down
by a total TM. (Note that writing down descriptions of these TMs does not require runningM.)
Since HP is undecidable, so is EQUIV.

4. Show that {M|M is a TM that halts on all inputs of length less than 300} is recursively
enumerable but its complement is not.

Solution: Denote the language by T300. Define a TM N , that on input a TM M, does the
following:

• For each string w with |w| < 300, run M on w

• If M halts on all such strings w, then accept and halt

Page 2

If M ∈ T300, then it halts on all string of length less than 300 and so N accepts M. Otherwise,
M loops on some string w thus making N loop on M. Hence L(N) = T300 establishing that
T300 is recursively enumerable.

To show that ¬T300 is not r.e. , we provide a reduction from ¬HP. Let (M, x) be an instance of
¬HP. Define a TM N , that does the following on input y:

• If |y| >= 300, then reject and halt (or accept or enter a trivial loop).

• Otherwise, run M on x.

• Accept and halt if M halts on x.

If M does not halt on x, then N loops on all inputs of length < 300. If M halts on x, then N
halts on all inputs of length < 300. That is, (M, x) ∈ ¬HP⇔ N ∈ ¬T300.

5. Is the set {M | L(M) contains atmost 300 elements} r.e. ?

Solution: This is a non-monotone property of r.e. sets. If an r.e. set A contains atmost 300
elements, then it is not necessary that all its supersets contain atmost 300 elements. Hence, it
follows by Rice’s theorem that the given set is not r.e.

6. Show that none of the following languages or their complements are r.e.

(a) REG = {M | L(M) is a regular set}.
Solution: We use Rice’s theorem to show that REG is undecidable. Let PREG denote the
property on r.e. sets defined as

PREG(A) =

{
T if A is regular
F otherwise

Then deciding this property is equivalent to deciding REG. If a set A is regular it is not
necessary that all its supersets are regular. In other words, there exist A,B such that A ⊆ B
and PREG(A) = T, PREG(B) = F. For instance, we can take A = φ and B = {0n1n |n ≥ 0}.
This shows that PREG is a non-monotone property. By Rice’s theorem, PREG is not r.e. or
equivalently REG is not r.e. Similarly, we can show that ¬REG or equivalently,

P¬REG(A) =

{
T if A is not regular
F otherwise

is not r.e. by proving that P¬REG is a non-monotone property. We only need to exhibit
two sets A,B with A ⊆ B such that P¬REG(A) = T and P¬REG(B) = F. Taking
A = {0n1n | n ≥ 0} and B = {0∗1∗} suffices.

(b) TOT = {M |M halts on all inputs}.
Solution: We show TOT is not r.e. via a reduction from ¬HP. Given an instance (M, x)
of ¬HP, we construct a TM N such that (M, x) ∈ ¬HP iff N ∈ TOT. Below is a description
of N .

N : on input y does the following.

• Store y on a separate track of the tape.

• Run M on x for |y| steps. (M and x are hardwired in N ’s finite control.)

• If M does not halt within |y| steps, then halt and either accept or reject.

Page 3

• Otherwise, enter a trivial loop.

If M does not halt on x, then N halts on all input strings. Suppose that M halts on x in
n steps. Then for any string y with |y| < n, N accepts y sinceM does not halt on x within
|y| steps. On the other hand, for any string y with |y| ≥ n, N does not halt. That is,

M does not halt on x =⇒ N halts on all input strings =⇒ N ∈ TOT

M halts on x =⇒ N does not halt on some input strings =⇒ N /∈ TOT

Since ¬HP is not r.e. , TOT is not r.e.

Next, we prove that ¬TOT is not r.e. through a reduction from ¬HP. Given an instance
(M, x) of ¬HP, we construct a TM N such that (M, x) ∈ ¬HP iff N ∈ ¬TOT. Below is a
description of N .

N : on input y does the following.

• Store y on a separate track of the tape.

• If |y| ≤ |x|, halt and accept.

• Run M on x.

• If M halts on y, then halt and accept.

IfM does not halt on x, then N halts on all input strings of length at most |x|. IfM halts
on x, then N accepts any string y. That is,

M does not halt on x =⇒ N does not halt on some inputs =⇒ N ∈ ¬TOT

M halts on x =⇒ N halts on all input strings =⇒ N /∈ ¬TOT

Since ¬HP is not r.e. , ¬TOT is not r.e.

7. Let

f(x) =

{
3x+ 1 if x is odd
x/2 if x is even

for any natural number x. Define C(x) as the sequence x, f(x), f(f(x)), . . ., which
terminates if and when it hits 1. For example, if x = 7, then

C(x) = (7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1).

Computer tests have shown that C(x) hits 1 eventually for x ranging from 1 to 87× 260

(as of 2017). But, the question of whether C(x) ends at 1 for all x ∈ N is not proven.
This is believed to be true and known as the Collatz conjecture. Suppose that MP were
decidable by a Turing machine K. Use K to describe a TM that is guaranteed to prove
or disprove Collatz conjecture.

Solution: Let N be a TM, that on input x, does the following.

• while x 6= 1,

– if x is even, x← x/2

– otherwise x← 3x+ 1

• accept and halt

Page 4

Let M be a TM, that on input y, does the following.

• erase y

• set x← 1 and repeat the following

– use K to determine whether N accepts x

– if not, accept and halt

– otherwise, x← x+ 1

If the Collatz conjecture is true, then M runs forever; otherwise M halts after finding a counter
example (in fact, the smallest counter example).

We now use K to determine whether or notM accepts an arbitrary input y to decide whether or
not Collatz conjecture is true.

8. (a) Show that the language

{(M,N) | M,N are Turing machines and L(M) ∩ L(N) = ∅}

is undecidable via reduction.

Solution: Let EI-TM the above langauge. We show that ¬HP ≤m EI-TM. Let (K, x) be an
instance of ¬HP. Construct M so that it accepts any input. Clearly L(M) = Σ∗. Let N
be defined so that, on input y it does the following: store y on a separate track; simulate K
on x. If it halts, then accept y. If (K, x) ∈ ¬HP, then L(N) = ∅ and L(M) ∩ L(N) = ∅. If
(K, x) /∈ ¬HP, then L(N) = Σ∗ and as a result M∩N 6= ∅. Since ¬HP is undecidable, so
is EI-TM.

(b) Prove the following extension of Rice’s theorem (of which part (a) is a special case):

Every non-trivial property of pairs of r.e. sets is undecidable.

More formally, let P : {r.e. sets} × {r.e. sets} → {>,⊥} be a non-trivial property
on pairs of r.e. sets. Then show that

TP = {(M,N) | M and N are TMs and P(L(M), L(N)) = >}

is undecidable.

Solution: Let P be a non-trivial property of pairs of r.e. sets. Assume w.l.g. that
P(∅, ∅) = ⊥. Since P is non-trivial, there exist r.e. sets L1, L2 such that P(L1, L2) = >.
Let M1, M2 be TMs recognising L1, L2 repectively. We show that HP ≤m TP . (If
P(∅, ∅) = >, then we can show that ¬HP ≤m TP via a similar argument.) Let N , x be an
instance of HP. Construct M′1 that on input w does the following:

• Run N on x (N , x are hardwired in the finite control of M′1).

• If N halts, simulate M1 on w.

• Accept if M1 accepts.

Similarly, construct M′2 that on input w does the following:

• Simulate N on x

• If N halts, simulate M2 on w.

Page 5

• Accept if M2 accepts.

If N halts on x, then L(M′1) = L(M1) and L(M′2) = L(M2). As a result,
P(L(M′1), L(M′2)) = >. If N does not halt on x, then L(M′1) = L(M′2) = ∅ whence
P(L(M′1), L(M′2)) = ⊥. In other words, (N , x) ∈ HP ⇔ (M′1,M′2) ∈ TP . Therefore, TP

is undecidable.

Page 6

