Tutorial 7

(Un)Decidability, Rice's Theorem

1. Show that the set $\{\mathcal{M} \mid \mathcal{M}$ is a DFA not accepting any string with odd number of 1 's $\}$ is decidable.
Hint: For a DFA \mathcal{M}, the problem of whether or not $L(\mathcal{M})=\emptyset$ is decidable.
2. Recall the definition of linear bounded automaton (LBA) and that the halting problem for LBA is decidable. Prove by diagonalisation that there exists a recursive set that is not accepted by any LBA.
3. True or False? It is decidable whether two given TMs accept the same set.
4. Show that $\{\mathcal{M} \mid \mathcal{M}$ is a TM that halts on all inputs of length less than 300$\}$ is recursively enumerable but its complement is not.
5. Is the set $\{\mathcal{M} \mid \mathcal{L}(\mathcal{M})$ contains atmost 300 elements $\}$ r.e. ?
6. Show that none of the following languages or their complements are r.e.
(a) $\operatorname{REG}=\{\mathcal{M} \mid \mathcal{L}(\mathcal{M})$ is a regular set $\}$.
(b) $\mathrm{TOT}=\{\mathcal{M} \mid \mathcal{M}$ halts on all inputs $\}$.
7. Let

$$
f(x)=\left\{\begin{array}{cl}
3 x+1 & \text { if } x \text { is odd } \\
x / 2 & \text { if } x \text { is even }
\end{array}\right.
$$

for any natural number x. Define $\mathrm{C}(x)$ as the sequence $x, f(x), f(f(x)), \ldots$, which terminates if and when it hits 1 . For example, if $x=7$, then

$$
C(x)=(7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1) .
$$

Computer tests have shown that $\mathrm{C}(x)$ hits 1 eventually for x ranging from 1 to 87×2^{60} (as of 2017). But, the question of whether $\mathrm{C}(x)$ ends at 1 for all $x \in \mathbb{N}$ is not proven. This is believed to be true and known as the Collatz conjecture. Suppose that MP were decidable by a Turing machine \mathcal{K}. Use \mathcal{K} to describe a TM that is guaranteed to prove or disprove Collatz conjecture.
8. (a) Show that the language

$$
\{(\mathcal{M}, \mathcal{N}) \mid \mathcal{M}, \mathcal{N} \text { are Turing machines and } L(\mathcal{M}) \cap L(\mathcal{N})=\emptyset\}
$$

is undecidable via reduction.
(b) Prove the following extension of Rice's theorem (of which part (a) is a special case):

Every non-trivial property of pairs of r.e. sets is undecidable.

More formally, let $\mathscr{P}:\{r . e$. sets $\} \times\{r . e$. sets $\} \rightarrow\{\top, \perp\}$ be a non-trivial property on pairs of r.e. sets. Then show that

$$
T_{\mathscr{P}}=\{(\mathcal{M}, \mathcal{N}) \mid \mathcal{M} \text { and } \mathcal{N} \text { are TMs and } \mathscr{P}(L(\mathcal{M}), L(\mathcal{N}))=\top\}
$$

is undecidable.

