TUTORIAL - 3 (COUNTABILITY \& ALGEBRAIC STRUCTURES)

Dr. Aritra Hazra
Dept. of Computer Science and Engineering, Indian Institute of Technology Kharagpur Email: aritrah@cse.iitkgp.ac.in

Problem-1

Let A and B be uncountable sets with $A \subseteq B$.
Prove or disprove: A and B are equinumerous.

Problem-2

Let A be an uncountable set and B a countably infinite subset of A.

Prove or disprove: A is equinumerous with $\mathrm{A}-\mathrm{B}$.

Problem-3

Prove that the real interval $[0,1)$ is equinumerous with the unit square $[0,1) \times[0,1)$.

Problem-4

Let $\mathrm{Z}[\mathrm{x}]$ denote the set of all univariate polynomials with integer coefficients.
Prove that $\mathrm{Z}[\mathrm{x}]$ is countable.

Problem-5

Define an operation \circ on $G=R^{*} \times R$ as

$$
(a, b)^{\circ}(c, d)=(a c, b c+d) .
$$

Prove that, (G, \circ) is a non-abelian group.

Problem-6

Let G be a (multiplicative) group, and H, K are subgroups of G .
Prove that,
(a) $H \cap K$ is a subgroup of G.
(b) HUK is a subgroup of G if and only if $\mathrm{H} \subseteq \mathrm{K}$ or $\mathrm{K} \subseteq \mathrm{H}$.
(c) Define HK = \{hk | heH, k $\in \mathrm{K}\}$. Define KH analogously. Prove that, HK is a subgroup of G if and only if $\mathrm{HK}=\mathrm{KH}$.

Problem-7

Let $R=Z \times Z$, and r, s be constant integers.
Define two operations, on R as follows:

$$
\begin{aligned}
& (a, b)+(c, d)=(a+c, b+d) \quad \text { and } \\
& (a, b) *(c, d)=(a d+b c+r a c, b d+s a c) .
\end{aligned}
$$

Prove that, R is a ring under these operations, + and *.

Problem-8

Let $R_{1}, R_{2}, \ldots, R_{n}$ be rings.
Prove that, the Cartesian product $\left(R_{1} \times R_{2} \times \ldots \times R_{n}\right)$ is a ring under component-wise addition and multiplication.
Show that, if each R_{k} is a ring with identity, then so also is the product.

THANK YOU!

Dr. Aritra Hazra
Dept. of Computer Science and Engineering, Indian Institute of Technology Kharagpur Email: aritrah@cse.iitkgp.ac.in

