TUTORIAL – 3 (COUNTABILITY & ALGEBRAIC STRUCTURES)

Dr. Aritra Hazra

Dept. of Computer Science and Engineering,
Indian Institute of Technology Kharagpur
Email: aritrah@cse.iitkgp.ac.in

Let A and B be uncountable sets with $A \subseteq B$.

Prove or disprove: A and B are equinumerous.

Let A be an uncountable set and B a countably infinite subset of A.

Prove or disprove: A is equinumerous with A – B.

Prove that the real interval [0, 1) is equinumerous with the unit square $[0, 1) \times [0, 1)$.

Let Z[x] denote the set of all univariate polynomials with integer coefficients.

Prove that Z[x] is countable.

Define an operation \circ on $G = R* \times R$ as $(a,b)\circ(c,d)=(ac,bc+d)$.

Prove that, (G,°) is a non-abelian group.

Let G be a (multiplicative) group, and H, K are subgroups of G. Prove that,

- (a) H∩K is a subgroup of G.
- (b) HUK is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$.
- (c) Define $HK = \{hk \mid h \in H, k \in K\}$. Define KH analogously. Prove that, HK is a subgroup of G if and only if HK = KH.

Let $R = Z \times Z$, and r, s be constant integers.

Define two operations, on R as follows:

$$(a,b)+(c,d) = (a+c,b+d)$$
 and

$$(a,b)*(c,d) = (ad+bc+rac,bd+sac).$$

Prove that, R is a ring under these operations, + and *.

Let R_1 , R_2 , ..., R_n be rings.

Prove that, the Cartesian product $(R_1 \times R_2 \times \cdots \times R_n)$ is a ring under component-wise addition and multiplication.

Show that, if each R_k is a ring with identity, then so also is the product.

THANK YOU!

Dr. Aritra Hazra

Dept. of Computer Science and Engineering,
Indian Institute of Technology Kharagpur
Email: aritrah@cse.iitkgp.ac.in