TUTORIAL – 2 (SET, RELATION, FUNCTION)

Dr. Aritra Hazra Dept. of Computer Science and Engineering, Indian Institute of Technology Kharagpur Email: aritrah@cse.iitkgp.ac.in

Let A, B, C \in U are three arbitrary sets such that A \cup B = A \cup C and A \cap B = A \cap C. Prove that, B = C.

For a function, $f : A \rightarrow B$, define a function $\mathcal{F} : \mathcal{P}(A) \rightarrow \mathcal{P}(B)$ as $\mathcal{F}(S) = f(S)$ for all $S \subseteq A$.

Prove that:

(a) \mathcal{F} is injective if and only if f is injective.

(b) \mathcal{F} is surjective if and only if f is surjective.

Let $f : A \rightarrow B$ be a function and σ an equivalence relation on B. Define a relation ρ on A as: a ρ a' if and only if f(a) σ f(a').

Answer the following:

(a) Prove that, ρ is an equivalence relation on A.

- (b) Define a map f⁻: A/ $\rho \rightarrow$ B/ σ as [a]_{ρ} | \rightarrow [f(a)]_{σ}. Prove that, f⁻is well-defined.
- (c) Prove that, f⁻is injective.
- (d) Prove or disprove: If f is a bijection, then so also is f⁻.
- (e) Prove or disprove: If f is a bijection, then so also is f.

[Genesis of rational numbers]

Define a relation ρ on A = Z × (Z \ {0}) as (a, b) ρ (c, d) if and only if ad = bc. (Here, Z is the set of integers)

(a) Prove that ρ is an equivalence relation.

(b) Argue that A/ ρ is essentially the set Q of rational numbers.

Let ρ be a total order on A. We call ρ a well-ordering of A if every non-empty subset of A contains a least element. In this exercise, we plan to construct a well-ordering of A = N × N. (Here, N is the set of natural numbers)

- (a) Define a relation ρ on A as (a,b) ρ (c,d) if and only if a \leq c or b \leq d.
- (b) Define a relation σ on A as (a,b) σ (c,d)if and only if a \leq c and b \leq d.

(c) Define a relation \leq_{L} on A as (a,b) \leq_{L} (c,d) if either (i) a < c, or (ii) a = c and b \leq d. Prove or disprove: ρ , σ , \leq_{L} is a well-ordering of A.

THANK YOU !

Dr. Aritra Hazra Dept. of Computer Science and Engineering, Indian Institute of Technology Kharagpur Email: aritrah@cse.iitkgp.ac.in