TUTORIAL - 2 (SET, RELATION, FUNCTION)

Dr. Aritra Hazra

Dept. of Computer Science and Engineering, Indian Institute of Technology Kharagpur

Email: aritrah@cse.iitkgp.ac.in

Problem-1

Let $A, B, C \in U$ are three arbitrary sets such that

$$
A \cup B=A \cup C \quad \text { and } \quad A \cap B=A \cap C .
$$

Prove that, $B=C$.

Problem-2

For a function, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, define a function $\mathcal{F}: \mathcal{P}(\mathrm{A}) \rightarrow \mathcal{P}(\mathrm{B})$ as $\mathcal{F}(S)=f(S)$ for all $S \subseteq A$.
Prove that:
(a) \mathcal{F} is injective if and only if f is injective.
(b) \mathcal{F} is surjective if and only if f is surjective.

Problem-3

Let $f: A \rightarrow B$ be a function and σ an equivalence relation on B. Define a relation ρ on A as: $a \rho a^{\prime}$ if and only if $f(a) \sigma f\left(a^{\prime}\right)$.
Answer the following:
(a) Prove that, ρ is an equivalence relation on A.
(b) Define a map $f^{-}: A / \rho \rightarrow B / \sigma$ as $[a]_{\rho} I \rightarrow[f(a)]_{\sigma}$. Prove that, f^{-}is well-defined.
(c) Prove that, f^{-}is injective.
(d) Prove or disprove: If f is a bijection, then so also is f^{-}.
(e) Prove or disprove: If f^{-}is a bijection, then so also is f.

Problem-4

[Genesis of rational numbers]
Define a relation ρ on $A=Z \times(Z \backslash\{0\})$ as (a, b) $\rho(c, d)$ if and only if $\mathrm{ad}=\mathrm{bc}$. (Here, Z is the set of integers)
(a) Prove that ρ is an equivalence relation.
(b) Argue that $\mathrm{A} / \mathrm{\rho}$ is essentially the set Q of rational numbers.

Problem-5

Let ρ be a total order on A. We call ρ a well-ordering of A if every non-empty subset of A contains a least element. In this exercise, we plan to construct a well-ordering of $\mathrm{A}=\mathrm{N} \times \mathrm{N}$. (Here, N is the set of natural numbers)
(a) Define a relation ρ on A as
$(a, b) \rho(c, d)$ if and only if $a \leq c$ or $b \leq d$.
(b) Define a relation σ on A as
(a,b) σ (c,d)if and only if $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$.
(c) Define a relation \leq_{L} on A as
(a, b) $\leq_{\mathrm{L}}(\mathrm{c}, \mathrm{d})$ if either (i) $\mathrm{a}<\mathrm{c}$, or (ii) $\mathrm{a}=\mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$.
Prove or disprove: ρ, σ, \leq_{L} is a well-ordering of A.

THANK YOU!

Dr. Aritra Hazra
Dept. of Computer Science and Engineering, Indian Institute of Technology Kharagpur
Email: aritrah@cse.iitkgp.ac.in

