Indian Institute of Technology Kharagpur Department of Computer Science and Engineering

Foundations of Computing Science ((CS60005)	Autumn Semeste	er, 2022-2023
End-Semester Examination	Date: 18-Nov-2022, 2:00 $\rm PM$ –	5:00 PM	Marks: 100

Instructions:

- Write your answers in the answer booklet provided to you in the examination hall.
- There are a total of FIVE questions, each having 20 marks.
- Answer ALL the questions (or as many as you can) mentioning the question numbers clearly.
- Be brief and precise. Write the answers for all parts of a question together.
- State any results you use or assumptions you make.
- Write all the proofs/deductions in mathematically/logically precise language.
- Sketchy proofs or claims without reasoning receive no credit.
- Only write down all the correct choice(s) / option(s) for each of the following questions.
 10 × 2 = 20
 Note: No justification is required for your given option(s); but a penalty of ¹/₂ per question will be deducted for guessing wrong, including not making all choices (in case of multiple correct options).
 - (a) The propositional logic statement $[(p \lor q \lor r) \to s]$ is equivalent to which one/more of the following?
 - (A) $\neg s \rightarrow (p \lor q \lor r)$
 - (B) $\neg s \rightarrow (p \land q \land r)$
 - (C) $(p \to s) \land (q \to s) \land (r \to s)$
 - (D) $(p \to s) \lor (q \to s) \lor (r \to s)$
 - (b) According to political experts, "A person who is a radical (*radical*) is elected (*elected*) if (s)he is conservative (*conservative*), but otherwise is not elected". Which of the following is/are the correct logical representation(s) of the above statement made by political experts?
 - (A) $(radical \land elected) \leftrightarrow conservative$
 - (B) $radical \rightarrow (elected \leftrightarrow conservative)$
 - (C) $radical \rightarrow ((conservative \rightarrow elected) \lor \neg elected)$
 - (D) $(conservative \rightarrow (radical \land elected)) \lor \neg elected$
 - (c) Let P and Q are two predicates, and $F_1 \Leftrightarrow F_2$ symbolically denotes equivalence of two predicate logic formulas, F_1 and F_2 (that is, F_1 if and only if F_2). Which of the following is/are incorrect?
 - (A) $\forall x [P(x) \lor Q(x)] \Leftrightarrow \forall x P(x) \lor \forall x Q(x)$
 - (B) $\exists x [P(x) \lor Q(x)] \Leftrightarrow \exists x P(x) \lor \exists x Q(x)$
 - (C) $\forall x \left[P(x) \land Q(x) \right] \Leftrightarrow \forall x P(x) \land \forall x Q(x)$
 - (D) $\exists x \left[P(x) \land Q(x) \right] \Leftrightarrow \exists x P(x) \land \exists x Q(x)$
 - (d) Let X, Y, Z be sets. Which of the following formulas is/are wrong? (A) $(X \cap Y \cap Z) \setminus Z = \emptyset$

- (B) $(X \cup Y \cup Z) \setminus Z = X \cup Y$
- (C) $(X \cap Y) \setminus Z = (X \setminus Z) \cap (Y \setminus Z)$
- (D) $(X \cup Y) \setminus Z = (X \setminus Z) \cup (Y \setminus Z)$
- (e) Let $A = \{a, b, c, d\}$. How many binary operations f on A are there such that f(a, b) is either c or d?
 - (A) 15^4
 - (B) 4^{15}
 - (C) 2×4^{15}
 - (D) 2×15^4
- (f) Define a relation ρ on \mathbb{Z} (the set of integers) such that $a \rho b$ if and only if either a = b or |a b| > 1. Which of the following statements about ρ is/are incorrect?
 - (A) ρ is reflexive
 - (B) ρ is symmetric
 - (C) ρ is antisymmetric
 - (D) ρ is transitive
- (g) Let N, Z and Q denotes the set of natural numbers, integers and rational numbers, respectively. Which of the following sets is/are <u>countable</u>?
 - (A) $\mathbb{N} \times \mathbb{N}$
 - (B) $\mathbb{Z} \times \mathbb{Q}$
 - (C) $\mathbb{Q} \setminus \mathbb{N}$
 - (D) $\mathbb{Q} \times \mathbb{Q}$
- (h) What is the inverse of an element a in the group $G = \{a \in \mathbb{R} \mid a > 0\}$ (\mathbb{R} denotes the set of real numbers) under the operation \odot defined by $a \odot b = a^{\ln b}$?
 - (A) 1/a
 - (B) $1/e^{\ln a}$
 - (C) $e^{1/\ln a}$
 - (D) $1/\ln a$
- (i) Consider the set \mathbb{Z} of all integers with the following operations, where s and t are constant integers.

$$a \oplus b = a + b + s,$$

 $a \odot b = a + b + tab.$

Which of the following is/are a necessary and sufficient condition for $(\mathbb{Z}, \oplus, \odot)$ to be a ring?

- (A) st = 1.
- (B) s = t = -1.
- (C) s and t can have any values.
- (D) s and t can have any values with $t \neq 0$.
- (j) Which of the following functions $f : \mathbb{Z} \to \mathbb{Z}$ (\mathbb{Z} denotes the set of integers) is/are a homomorphism of the ring ($\mathbb{Z}, +, \cdot$) to itself?
 - (A) f(x) = 1
 - (B) f(x) = x
 - (C) f(x) = 2x
 - (D) $f(x) = x^2$

- 2. For each of the following languages, identify whether the language is <u>recursive</u>, <u>*r.e.*</u> but not recursive or <u>not *r.e.*</u> For all languages defined below, \mathcal{M} denotes a Turing machine. Justify your answer.
 - (a) $\{\mathcal{M} \mid \mathcal{M} \text{ on input } x \text{ moves its head more than 100 cells away from the left endmarker}\}$.
 - (b) $\{\mathcal{M} \mid L(\mathcal{M}) \text{ is recursive}\}.$
 - (c) $\{\mathcal{M} \mid L(\mathcal{M}) \text{ has at least } 100 \text{ states}\}.$
 - (d) $\{\mathcal{M} \mid \mathcal{M} \text{ halts on all inputs of length less than 100}\}.$
- 3. (a) Let ϕ be a Boolean formula in CNF. An assignment to the variables of ϕ is called *not-all-equal* if in each clause, at least one literal is assigned 1 and at least one literal is 0. Show that the following language is **NP**-Complete.

 $\mathsf{NESAT} = \{\phi \mid \phi \text{ is a CNF formula having a satisfying } not-all-equal \text{ assignment} \}$

Assume no constants are allowed in the formulae.

(b) Let S be a finite set and $C = \{C_1, C_2, ..., C_k\}$ be a collection of subsets of S, for some k > 0. We say S is 2-colourable with respect to C if we can colour each element of S in red or blue, such that every C_i contains at least one red element and at least one blue element. Show that the language

 $2\mathsf{COLOUR} = \{ \langle S, \mathcal{C} \rangle \mid S \text{ is 2-colourable with respect to } \mathcal{C} \}$

is NP-Complete.

- 4. Answer true or false. Justify.
 - (a) If L_1, L_2 are **NP**-complete, then so is $L_1 \cup L_2$.
 - (b) All **NP**-Hard problems are decidable.
 - (c) $NSPACE(2^n) \subseteq DSPACE(4^n).$
 - (d) **PSPACE** is closed under Kleene star (i.e., if $L \in \mathbf{PSPACE}$, then $L^* \in \mathbf{PSPACE}$).
 - (e) $\mathbf{polyL} \neq \mathbf{polyNL}$, where $\mathbf{polyL} = \bigcup_{c>0} \mathbf{DSPACE}(\log^c n)$, $\mathbf{polyNL} = \bigcup_{c>0} \mathbf{NSPACE}(\log^c n)$.
- $5 \times 4 = 20$

20

5. A graph G = (V, E) is *bipartite* if V can be partitioned into two sets V_1, V_2 such that every edge in E has one end-point in V_1 and the other in V_2 . Let BIPARTITE be the set of all undirected bipartite graphs. Show that BIPARTITE \in **NL**.

Hint: Use the fact that $\mathbf{coNL} = \mathbf{NL}$.

 $4 \times 5 = 20$

10

10