Indian Institute of Technology Kharagpur Department of Computer Science and Engineering

Foundations of Computing Science (CS60005)
Autumn Semester, 2022-2023
End-Semester Examination
Date: 18-Nov-2022, 2:00 PM - 5:00 PM
Marks: 100

Instructions:

- Write your answers in the answer booklet provided to you in the examination hall.
- There are a total of FIVE questions, each having 20 marks.
- Answer ALL the questions (or as many as you can) mentioning the question numbers clearly.
- Be brief and precise. Write the answers for all parts of a question together.
- State any results you use or assumptions you make.
- Write all the proofs/deductions in mathematically/logically precise language.
- Sketchy proofs or claims without reasoning receive no credit.

1. Only write down all the correct choice(s) / option(s) for each of the following questions.

Note: No justification is required for your given option(s); but a penalty of $\frac{1}{2}$ per question will be deducted for guessing wrong, including not making all choices (in case of multiple correct options).
(a) The propositional logic statement $[(p \vee q \vee r) \rightarrow s]$ is equivalent to which one/more of the following?
(A) $\neg s \rightarrow(p \vee q \vee r)$
(B) $\neg s \rightarrow(p \wedge q \wedge r)$
(C) $(p \rightarrow s) \wedge(q \rightarrow s) \wedge(r \rightarrow s)$
(D) $(p \rightarrow s) \vee(q \rightarrow s) \vee(r \rightarrow s)$
(b) According to political experts, "A person who is a radical (radical) is elected (elected) if (s)he is conservative (conservative), but otherwise is not elected". Which of the following is/are the correct logical representation(s) of the above statement made by political experts?
(A) $($ radical \wedge elected $) \leftrightarrow$ conservative
(B) radical \rightarrow (elected \leftrightarrow conservative)
(C) radical $\rightarrow(($ conservative \rightarrow elected $) \vee \neg$ elected $)$
(D) $($ conservative $\rightarrow($ radical \wedge elected $)) \vee \neg$ elected
(c) Let P and Q are two predicates, and $F_{1} \Leftrightarrow F_{2}$ symbolically denotes equivalence of two predicate logic formulas, F_{1} and F_{2} (that is, F_{1} if and only if F_{2}). Which of the following is/are incorrect?
(A) $\forall x[P(x) \vee Q(x)] \Leftrightarrow \forall x P(x) \vee \forall x Q(x)$
(B) $\exists x[P(x) \vee Q(x)] \Leftrightarrow \exists x P(x) \vee \exists x Q(x)$
(C) $\forall x[P(x) \wedge Q(x)] \Leftrightarrow \forall x P(x) \wedge \forall x Q(x)$
(D) $\exists x[P(x) \wedge Q(x)] \Leftrightarrow \exists x P(x) \wedge \exists x Q(x)$
(d) Let X, Y, Z be sets. Which of the following formulas is/are wrong?
(A) $(X \cap Y \cap Z) \backslash Z=\emptyset$
(B) $(X \cup Y \cup Z) \backslash Z=X \cup Y$
(C) $(X \cap Y) \backslash Z=(X \backslash Z) \cap(Y \backslash Z)$
(D) $(X \cup Y) \backslash Z=(X \backslash Z) \cup(Y \backslash Z)$
(e) Let $A=\{a, b, c, d\}$. How many binary operations f on A are there such that $f(a, b)$ is either c or d ?
(A) 15^{4}
(B) 4^{15}
(C) 2×4^{15}
(D) 2×15^{4}
(f) Define a relation ρ on \mathbb{Z} (the set of integers) such that $a \rho b$ if and only if either $a=b$ or $|a-b|>1$. Which of the following statements about ρ is/are incorrect?
(A) ρ is reflexive
(B) ρ is symmetric
(C) ρ is antisymmetric
(D) ρ is transitive
(g) Let \mathbb{N}, \mathbb{Z} and \mathbb{Q} denotes the set of natural numbers, integers and rational numbers, respectively. Which of the following sets is/are countable?
(A) $\mathbb{N} \times \mathbb{N}$
(B) $\mathbb{Z} \times \mathbb{Q}$
(C) $\mathbb{Q} \backslash \mathbb{N}$
(D) $\mathbb{Q} \times \mathbb{Q}$
(h) What is the inverse of an element a in the group $G=\{a \in \mathbb{R} \mid a>0\}$ (\mathbb{R} denotes the set of real numbers) under the operation \odot defined by $a \odot b=a^{\ln b}$?
(A) $1 / a$
(B) $1 / e^{\ln a}$
(C) $e^{1 / \ln a}$
(D) $1 / \ln a$
(i) Consider the set \mathbb{Z} of all integers with the following operations, where s and t are constant integers.

$$
\begin{aligned}
& a \oplus b=a+b+s \\
& a \odot b=a+b+t a b .
\end{aligned}
$$

Which of the following is/are a necessary and sufficient condition for $(\mathbb{Z}, \oplus, \odot)$ to be a ring?
(A) $s t=1$.
(B) $s=t=-1$.
(C) s and t can have any values.
(D) s and t can have any values with $t \neq 0$.
(j) Which of the following functions $f: \mathbb{Z} \rightarrow \mathbb{Z}(\mathbb{Z}$ denotes the set of integers) is/are a homomorphism of the ring $(\mathbb{Z},+, \cdot)$ to itself?
(A) $f(x)=1$
(B) $f(x)=x$
(C) $f(x)=2 x$
(D) $f(x)=x^{2}$
2. For each of the following languages, identify whether the language is recursive, r.e. but not recursive or not r.e. For all languages defned below, \mathcal{M} denotes a Turing machine. Justify your answer.
(a) $\{\mathcal{M} \mid \mathcal{M}$ on input x moves its head more than 100 cells away from the left endmarker $\}$.
(b) $\{\mathcal{M} \mid L(\mathcal{M})$ is recursive $\}$.
(c) $\{\mathcal{M} \mid L(\mathcal{M})$ has atleast 100 states $\}$.
(d) $\{\mathcal{M} \mid \mathcal{M}$ halts on all inputs of length less than 100$\}$.

$$
4 \times 5=20
$$

3. (a) Let ϕ be a Boolean formula in CNF. An assignment to the variables of ϕ is called not-all-equal if in each clause, at least one literal is assigned 1 and at least one literal is 0 . Show that the following language is NP-Complete.

$$
\text { NESAT }=\{\phi \mid \phi \text { is a CNF formula having a satisfying not-all-equal assignment }\}
$$

Assume no constants are allowed in the formulae.
(b) Let S be a finite set and $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be a collection of subsets of S, for some $k>0$. We say S is 2-colourable with respect to \mathcal{C} if we can colour each element of S in red or blue, such that every C_{i} contains at least one red element and at least one blue element. Show that the language

$$
\text { 2COLOUR }=\{\langle S, \mathcal{C}\rangle \mid S \text { is 2-colourable with respect to } \mathcal{C}\}
$$

is NP-Complete.
4. Answer true or false. Justify.
(a) If L_{1}, L_{2} are NP-complete, then so is $L_{1} \cup L_{2}$.
(b) All NP-Hard problems are decidable.
(c) $\operatorname{NSPACE}\left(2^{n}\right) \subseteq \operatorname{DSPACE}\left(4^{n}\right)$.
(d) PSPACE is closed under Kleene star (i.e., if $L \in$ PSPACE, then $L^{*} \in$ PSPACE).
(e) polyL \neq polyNL, where polyL $=\cup_{c>0}$ DSPACE $\left(\log ^{c} n\right)$, polyNL $=\cup_{c>0}$ NSPACE $\left(\log ^{c} n\right)$.

$$
5 \times 4=20
$$

5. A graph $G=(V, E)$ is bipartite if V can be partitioned into two sets V_{1}, V_{2} such that every edge in E has one end-point in V_{1} and the other in V_{2}. Let BIPARTITE be the set of all undirected bipartite graphs. Show that BIPARTITE \in NL.
Hint: Use the fact that $\operatorname{coNL}=\mathbf{N L}$.
