
Indian Institute of Technology Kharagpur
Department of Computer Science and Engineering

Foundations of Computing Science (CS60005) Autumn Semester, 2022-2023

End-Semester Examination Date: 18-Nov-2022, 2:00 PM – 5:00 PM Marks: 100

Instructions:

• Write your answers in the answer booklet provided to you in the examination hall.

• There are a total of FIVE questions, each having 20 marks.

• Answer ALL the questions (or as many as you can) mentioning the question numbers clearly.

• Be brief and precise. Write the answers for all parts of a question together.

• State any results you use or assumptions you make.

• Write all the proofs/deductions in mathematically/logically precise language.

• Sketchy proofs or claims without reasoning receive no credit.

1. Only write down all the correct choice(s) / option(s) for each of the following questions. 10 × 2 = 20

Note: No justification is required for your given option(s); but a penalty of 1
2 per question will be deducted for

guessing wrong, including not making all choices (in case of multiple correct options).

(a) The propositional logic statement
[
(p ∨ q ∨ r)→ s

]
is equivalent to which one/more of the following?

(A) ¬s→ (p ∨ q ∨ r)
(B) ¬s→ (p ∧ q ∧ r)
(C) (p→ s) ∧ (q → s) ∧ (r → s)

(D) (p→ s) ∨ (q → s) ∨ (r → s)

Solution: (C)

(b) According to political experts, “A person who is a radical (radical) is elected (elected) if (s)he is
conservative (conservative), but otherwise is not elected”. Which of the following is/are the correct
logical representation(s) of the above statement made by political experts?

(A)
(
radical ∧ elected

)
↔ conservative

(B) radical→
(
elected↔ conservative

)
(C) radical→

(
(conservative→ elected) ∨ ¬elected

)
(D)

(
conservative→ (radical ∧ elected)

)
∨ ¬elected

Solution: (B)

(c) Let P and Q are two predicates, and F1 ⇔ F2 symbolically denotes equivalence of two predicate logic
formulas, F1 and F2 (that is, F1 if and only if F2). Which of the following is/are incorrect?

(A) ∀x
[
P (x) ∨Q(x)

]
⇔ ∀x P (x) ∨ ∀x Q(x)

(B) ∃x
[
P (x) ∨Q(x)

]
⇔ ∃x P (x) ∨ ∃x Q(x)

(C) ∀x
[
P (x) ∧Q(x)

]
⇔ ∀x P (x) ∧ ∀x Q(x)

(D) ∃x
[
P (x) ∧Q(x)

]
⇔ ∃x P (x) ∧ ∃x Q(x)

Page 1

Solution: (A),(D)

(d) Let X,Y, Z be sets. Which of the following formulas is/are wrong?

(A) (X ∩ Y ∩ Z) \ Z = ∅
(B) (X ∪ Y ∪ Z) \ Z = X ∪ Y
(C) (X ∩ Y) \ Z = (X \ Z) ∩ (Y \ Z)

(D) (X ∪ Y) \ Z = (X \ Z) ∪ (Y \ Z)

Solution: (B)

(e) Let A = {a, b, c, d}. How many binary operations f on A are there such that f(a, b) is either c or d?

(A) 154

(B) 415

(C) 2× 415

(D) 2× 154

Solution: (C)

(f) Define a relation ρ on Z (the set of integers) such that a ρ b if and only if either a = b or |a − b| > 1.
Which of the following statements about ρ is/are incorrect?

(A) ρ is reflexive

(B) ρ is symmetric

(C) ρ is antisymmetric

(D) ρ is transitive

Solution: (C),(D)

(g) Let N, Z and Q denotes the set of natural numbers, integers and rational numbers, respectively. Which of
the following sets is/are countable?

(A) N× N
(B) Z×Q
(C) Q \ N
(D) Q×Q
Solution: (A),(B),(C),(D)

(h) What is the inverse of an element a in the group G = {a ∈ R | a > 0} (R denotes the set of real numbers)
under the operation � defined by a� b = aln b?

(A) 1/a

(B) 1/eln a

(C) e1/ ln a

(D) 1/ ln a

Solution: (C)

(i) Consider the set Z of all integers with the following operations, where s and t are constant integers.

a⊕ b = a+ b+ s,

a� b = a+ b+ tab.

Which of the following is/are a necessary and sufficient condition for (Z,⊕,�) to be a ring?

Page 2

(A) st = 1.

(B) s = t = −1.

(C) s and t can have any values.

(D) s and t can have any values with t 6= 0.

Solution: (A)

(j) Which of the following functions f : Z→ Z (Z denotes the set of integers) is/are a homomorphism of the
ring (Z,+, ·) to itself?

(A) f(x) = 1

(B) f(x) = x

(C) f(x) = 2x

(D) f(x) = x2

Solution: (B)

Page 3

2. For each of the following languages, identify whether the language is recursive, r.e. but not recursive or not r.e.
For all languages defned below, M denotes a Turing machine. Justify your answer.

(a) {M |M on input x moves its head more than 100 cells away from the left endmarker}.
Solution: Recursive.

Suppose a TM M never moves its head more than 100 cells to the right of `. Then there are only finitely many
configurations possible for the TM corresponding to a combination of 101 possible positions of tape head, |Q|
possible states and |Γ \ {`}| many possibilities for each of the 100 cells to the right of `. So the total number of
configurations possible is N = |Q| × 101× (|Γ| − 1)100. Now simulate M for N + 1 steps. There are 3 possibilities:
M halts before moving past 100-th cell; one of the configurations repeats in which case the TM loops; orM moves
past 100-th cell. So we can decide in at most N + 1 steps whether M moves past the 100-th cell or not.

(b) {M | L(M) is recursive}.
Solution: Not r.e.

Define a property P on r.e. sets as follows.

P(A) =

{
> if A is recursive
⊥ otherwise

Consider the set L = {(M, x) | M halts on input x in less than 100 steps.}. We can design a TM N that takes as
input (M, x), simulatesM on input x for 100 steps; accepts ifM halts and rejects otherwise. N is total and hence
L is recursive. In other words, P(L) = >. Now, L ⊆ HP. But HP is r.e. but not recursive i.e., P(HP) = ⊥. Hence
P is a non-monotone property and by part II of Rice’s theorem it is not semi-decidabble or equivalanetly not r.e. .

(c) {M | L(M) has atleast 100 states}.
Solution: Recursive.

Check the description of the machine to see if the number of states is ≥ 100.

(d) {M |M halts on all inputs of length less than 100}.
Solution: r.e. but not recursive.

Denote the language by T100. Define a TM N , that on input a TM M, does the following:

• For each string w with |w| < 100, run M on w

• If M halts on all such strings w, then accept and halt

If M∈ T100, then it halts on all string of length less than 100 and so N accepts M. Otherwise, M loops on some
string w thus making N loop on M. Hence L(N) = T100 establishing that T100 is recursively enumerable.

To show that T100 is not recursive, we provide a reduction from HP. Let (M, x) be an instance of HP. Define a
TM N , that does the following on input y:

• If |w| >= 100, then reject and halt (or accept or enter a trivial loop).

• Otherwise, run cM on x.

• Accept and halt if M halts on x.

If M halts on x, then N halts on all inputs of length < 100. If M does not halt on x, then N loops on all inputs
of length < 100. That is, (M, x) ∈ HP⇔ N ∈ T100.

4 × 5 = 20

3. (a) Let φ be a Boolean formula in CNF. An assignment to the variables of φ is called not-all-equal if in each
clause, at least one literal is assigned 1 and at least one literal is 0. Show that the following language is
NP-Complete.

NESAT = {φ | φ is a CNF formula having a satisfying not-all-equal assignment}

Assume no constants are allowed in the formulae. 10

Solution: Clearly NESAT is in NP. We show that SAT ≤p NESAT. Let φ = c1∧c2∧· · ·∧cm be an instance of SAT.
Construct a formula ψ as follows: introduce m+1 new variables w1, · · · , wm, z and for each clause ci = x1∨· · ·∨xk
of φ (where xi’s are literals), include two clauses ci,1 = x1 ∨ · · · ∨ xk−1 ∨ wi and ci,2 = xk ∨ ¬wi ∨ z in ψ.

Page 4

Note that if f : {u1, . . . , un} → {0, 1} is a not-all-equal satisfying assignment for a CNF formula φ over variables
u1, . . . , un, then so is ¬f (¬f just flips the assignment to each variable).

φ ∈ SAT =⇒ ψ ∈ NESAT: If φ ∈ SAT, there is an assignment of truth values to u1, . . . , un such that φ is true.
We show that there exists a not-all-equal satisfying assignment for ψ. The assignment to u1, . . . , un remains
unchanged. Since each clause of φ is satisfied, so is ci = x1 ∨ · · · ∨ xk−1 ∨ xk. If x1 ∨ · · · ∨ xk−1 true, then ci,1
is true; setting wi = 0, z = 0 ensures that ci,2 is also satisfied and hence ψ has a not-all-equal assignment.
Otherwise, it must be the case that xk = 1. Then setting wi = 1, z = 0 leads to a not-all-equal assignment
of ψ.

ψ ∈ NESAT =⇒ φ ∈ SAT: If ψ ∈ NESAT, i.e., there exists a satisfying not-all-equal assignment of variables
u1, . . . , un, w1, . . . , wm, z. We show that φ ∈ SAT by exhibiting a satisfying assignment for ψ. Suppose
that the not-all-equal assignment sets z = 0. Then the same assignemnt to u1, u2, . . . , un will satisfy φ –
consider clause ci; if xk = 1 then ci is satisfied; otherwise since ci,2 has atleast one literal assigned 1, it must
be the case that ¬wi = 1, i.e., wi = 0 and since ci,1 is satisfied, x1 ∨ · · · ∨xk−1 is true and so ci must be true.
Now suppose that the not-all-equal assignment f for ψ sets z = 1, then ¬f would still satisfy ψ and ensure
z = 0. Use the same reasoning as above to show a satisfying assignment for φ.

(b) Let S be a finite set and C = {C1, C2, ..., Ck} be a collection of subsets of S, for some k > 0. We say S is
2-colourable with respect to C if we can colour each element of S in red or blue, such that every Ci contains
at least one red element and at least one blue element. Show that the language

2COLOUR = {〈S, C〉 | S is 2-colourable with respect to C}

is NP-Complete. 10

Solution: Let φ = c1 ∧ c2 ∧ · · ·∧ cm, a CNF formula over n variables u1, . . . , un, be an instance of NESAT. We will
show how to transform φ to a set S and a collection of its subsets C such that φ ∈ NESAT iff 〈S, C〉 ∈ 2COLOUR.
Define S to contain elements xi, x

′
i corresponding to literals ui,¬ui for i ∈ [1, n]. Add the subsets Bi = {xi, x′i}

(for i ∈ [1, n]) to C. Further, include subsets Cj for j = 1, . . . ,m constructed as follows: for every i = 1, . . . , n, if
clause cj contains ui, then Cj ← Cj ∪ {xj}; otherwise, if cj contains ¬ui, then Cj ← Cj ∪ {x′j}.
Suppose that φ has a not-all-equal satisfying assignment. Then we show a 2-colouring of S such that 〈S, C〉 ∈
2COLOUR. If ui = 1, then colour xi red and x′i blue. Otherwise, colour xi blue and x′i red. This would ensure that
each Bi contains at least one blue element and one red element. Further, since each clause has at least one literal
assigned 1 and at least one literal assigned 0, the red (resp. blue) elements in Cj would exactly correspond to the
literals assigned 1 (resp. 0). Hence each Cj would contain at least one red element and at least one blue element.

For the other direction, suppose that S is 2-colourable with respect to C. Fix a 2-colouring of S. For each i ∈ [1, n],
if xi is coloured red, then it must be the case that x′i is coloured blue (and vice-versa), since otherwise Bi would
have both its entries coloured in red (resp. blue). If xi is coloured red, then set ui = 1; otherwise, set ui = 0. To
see that this is a not-all-equal satisfying assignment for φ, observe that Cj contains at least one element coloured
in red and at least one element coloured in blue. The literals in clause cj corresponding to red and blue elements
would be assigned 1 and 0 respectively. This holds for each j ∈ [1,m] and hence this is a satisfying not-all-equal
assignment.

We have φ ∈ NESAT iff 〈S, C〉 ∈ 2COLOUR. Further, NESAT is NP-complete and the above reduction runs in
polynomial time. Therefore, 2COLOUR is NP-complete.

4. Answer true or false. Justify.

(a) If L1, L2 are NP-complete, then so is L1 ∪ L2.

Solution: False.

We construct a counter example using the following two NP-Complete sets.

HAMPATH = {G |G is an undirected graph with a Hamiltonian path}

SAT = {φ | φ is a satisfiable CNF formula}
Let

L1 = {(G,φ) |G ∈ HAMPATH, φ is any CNF formula},

Page 5

and
L2 = {(G,φ) |G is an undirected graph, φ ∈ SAT}.

Clearly L1, L2 are both NP-Complete, whereas

L1 ∪ L2 = {(G,φ) |G is an undirected graph, φ is a CNF formula}

is not. It can be decided in poly-time.

(b) All NP-Hard problems are decidable.

Solution: False.

Halting problem is undecidable but is also NP-hard.

(c) NSPACE(2n) ⊆ DSPACE(4n).

Solution: True.

Follows from Savitch’s theorem.

(d) PSPACE is closed under Kleene star (i.e., if L ∈ PSPACE, then L∗ ∈ PSPACE).

Solution: True.

Let L ∈ PSPACE and let M be a deterministic polynomial space machine deciding L. Observe that x ∈ L∗ iff
one of the following holds: x = ε, x ∈ L, x = wz such that w ∈ L∗ and z ∈ L∗. Let x = x1x2 · · ·xn and let xi,j
(for 1 ≤ i ≤ j ≤ n) denote the substring xixi+1 · · ·xj of x. We will use dynamic programming to build a matrix
T = (ti,j) with ti,j = 1 if xi,j ∈ L∗ and 0 otherwise. Essentially we consider all substrings of x, starting with
substrings of length 1 and ending with all substrings of length n. Below is the pseudocode:

Input: x = x1 · · ·xn

Initialise ti,j to 0.

If x = ε, then accept;

For k = 1, . . . , n:
For i = 1, . . . , n− k + 1:
j = i+ k − 1;
Run M on xi,j;
If M accepts , then set ti,j = 1;
Else

For ` = i, . . . , j − 1:
If ti,` = 1, and t`+1,j = 1, then set ti,j = 1;

If t1,n = 1, then accept; Else reject;

We now analyze the space complexity of the above algorithm. In each inner loop, we run M once which takes
polynomial space (since L ∈ PSPACE). Storing T requires O(n2)-space and each execution of the loop requires
constant number of cells to store the indices. Hence the algorithm runs in polynomial space.

Alternatively, using the fact that PSPACE = NPSPACE, we can define a poly-space NDTM that decides L∗

that guesses an index i in x; checks whether x1,i ∈ L usingM and then recursively checks whether xi+1,n ∈ L∗. It
is easy to verify that the first three run in polynomial space.

(e) polyL 6= polyNL, where polyL = ∪c>0DSPACE(logc n), polyNL = ∪c>0NSPACE(logc n).

Solution: False.

The two classes are equal. Follows from Savitch’s theorem.

5 × 4 = 20

5. A graph G = (V,E) is bipartite if V can be partitioned into two sets V1, V2 such that every edge in E has one
end-point in V1 and the other in V2. Let BIPARTITE be the set of all undirected bipartite graphs. Show that
BIPARTITE ∈ NL.
Hint: Use the fact that coNL = NL. 20

Solution: To show BIPARTITE is in NL, we use the fact that coNL = NL and show ¬BIPARTITE ∈ NL. .

1. The certificate definition of NL is as follows: A language L is in NL if there is a polynomial q and a log-space
Turing machine M such that x ∈ L⇐⇒ ∃u ∈ {0, 1}q(|x|),M(x, u) = 1, with the added restriction that u is given

Page 6

on a special ”read-once” tape i.e., the reading head on this tape moves only towards the right. So, x is placed on
the input tape, u is placed on the special read-once tape (both of which could have polynomial length) andM uses
at most O(log |x|) space on its work tape. The reason for the read-once restriction is that in a non-deterministic
machine running in log-space, you cannot remember the choices you make.

¬BIPARTITE has short read-once certificates since a graph is not bipartite iff it contains odd cycles. The certificate
is an odd cycle that is, a sequence of vertices v2, v2, . . . , vk that can be verified to form a cycle using logn space
(where n = |V |) – remember v1 (takes logn), for each i = 1, . . . , k− 1, check that {vi, vi+1} ∈ E and lastly, check
if {v1, vk} ∈ E. You do not need to traverse through the certificate backwards at any point and so it is read once.
In addition to remembering the first vertex, it is required to maintain a counter to test that the length of the cycle
is odd, which again requires logn space.

2. The above certificate definition can be used to describe a non-deterministic TMM that will decide ¬BIPARTITE.
Let G = (V,E) be an instance of ¬BIPARTITE. Non-deterministically choose a starting vertex s ∈ V ; set u = s
and k = 0. Repeat the following while i <= n: if u has degree 0, reject; otherwise, choose an edge {u, v} ∈ E,
set u = v. If u = s and k > 1 is odd, then stop and output 1; otherwise increment k and continue execution
of the loop. If i > n, output 0. Note that this algorithm outputs 1 iff G contains an odd cycle thus deciding
¬BIPARTITE. Since the algorithm need to remember only s, the current vertex u and maintain a counter k that
is at most n at any point, the space required is O(logn).

Page 7

