Indian Institute of Technology Kharagpur Department of Computer Science and Engineering

Foundations of Computing Science (CS60005)

Autumn Semester, 2022-2023
Class Test 2
Date: 05-Nov-2022 (Saturday) 10:30AM - 11:30AM
Marks: 20

Instructions:

- There are THREE questions. Answer ALL questions.
- Write your answers in the answer booklet provided to you in the examination hall.
- Keep you answers brief and precise. Write solutions for all parts of a question together.
- Precisel state all assumptions you make.
- Sketchy proofs and claims without proper reasoning will be given no credit.

1. Prove or disprove the following statements.
(a) Every infinite regular set contains a subset that is not recursively enumerable.

Solution: An infinite regular set is countable. But it has uncountably many subsets. Number of Turing machines is countable since each Turing machine can be encoded (uniquely) as a natural number. A subset of the set of all Turing machines corresponds to the set of all r.e. langauges, which is countable. Hence at least one of the subsets of a regular set must be non r.e. .
(b) Every infinite r.e. set contains an infinite recursive subset.

Hint: A set is recursive iff there exists an enumeration machine enumerating its strings in non-decreasing order of length.
Solution: We know that a set is recursive iff there exists an enumeration machine enumerating its strings in lexicographic order. (Here, lexicographic order of strings in Σ^{*} is an arrangement such that strings are in nondecreasing order of length and strings of the same length are in lexicographic order.)
Let A be an infinite r.e. set over alphabet Σ and let \mathcal{M} be an enumeration machine that enumerates A. Let \mathcal{N} be an enumeration machine that simulates \mathcal{M} and does the following whenever \mathcal{M} enters the enumeration state:

- Suppose x is the first string that \mathcal{M} enumerates. Enumerate x and continue simulating \mathcal{M}, remembering x.
- Repeat: if \mathcal{M} enumerates a string y such that x precedes y in a lexicographic order of strings, then enumerate y; set $x \leftarrow y$ (i.e., replace x on the tape with y). Otherwise, ignore y and continue simulating \mathcal{M}.
Observe that, for any string x, \mathcal{M} always enumerates a string y that comes after x in the lexicographic order as A is infinite.
The strings enumerated by \mathcal{N} are in lexicographic order and therefore $L(\mathcal{N})$ is recursive.

2. Consider the languge $\{(\mathcal{M}, x, p) \mid \mathcal{M}$ on input x visits state p during the computation $\}$. (Here, $p \in Q$ with Q being the set of states of \mathcal{M} and $x \in \Sigma^{*}$ where Σ is the input alphabet of the Turing machine \mathcal{M}.) Is this language decidable? Justify.

Solution: Let $L=\{(\mathcal{M}, x, p) \mid \mathcal{M}$ on input x visits state p during the computation $\}$. We show that L is undecidable by reducin MP to L. The reduction maps an instance (\mathcal{M}, x) of MP to (\mathcal{M}, x, t) where t is the accept state of \mathcal{M}. Now, $(\mathcal{M}, x) \in \mathrm{MP} \Longrightarrow \mathcal{M}$ accepts $x \Longrightarrow \mathcal{M}$ enters state t on input $x \Longrightarrow(\mathcal{M}, x, t) \in L$; and $(\mathcal{M}, x) \notin \mathrm{MP} \Longrightarrow \mathcal{M}$ does not accept $x \Longrightarrow \mathcal{M}$ never enters state t on input $x \Longrightarrow(\mathcal{M}, x, t) \notin L$.
3. Let REG $=\{\mathcal{M} \mid \mathcal{M}$ is a TM and $L(\mathcal{M})$ is a regular set $\}$. One of the following is true. Identify which one and justify your answer.
(a) REG is recursive.
(b) REG is r.e. and \neg REG is not r.e.
(c) REG is not r.e. and \neg REG is r.e.
(d) Neither REG nor \neg REG is r.e.

Solution: Answer is (d).
Let $P_{\text {REG }}$ denote the property on r.e. sets defined as

$$
P_{\text {REG }}(A)= \begin{cases}\mathrm{T} & \text { if } A \text { is regular } \\ \mathrm{F} & \text { otherwise }\end{cases}
$$

Then deciding this property is equivalent to deciding REG. If a set A is regular it is not necessary that all its supersets are regular. In other words, there exist A, B such that $A \subseteq B$ and $P_{\text {REG }}(A)=\mathrm{T}, P_{\mathrm{REG}}(B)=\mathrm{F}$. For instance, we can take $A=\phi$ and $B=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$. This shows that $P_{\text {REG }}$ is a non-monotone property. By Rice's theorem, $P_{\text {REG }}$ is not r.e. or equivalently REG is not r.e. Similarly, we can show that \neg REG or equivalently,

$$
P_{\neg \text { REG }}(A)= \begin{cases}\mathrm{T} & \text { if } A \text { is not regular } \\ \mathrm{F} & \text { otherwise }\end{cases}
$$

is not r.e. by proving that $P_{\neg \text { REG }}$ is a non-monotone property. We only need to exhibit two sets A, B with $A \subseteq B$ such that $P_{\neg \text { REG }}(A)=\mathrm{T}$ and $P_{\neg \text { REG }}(B)=\mathrm{F}$. Taking $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ and $B=\left\{0^{*} 1^{*}\right\}$ suffices.

