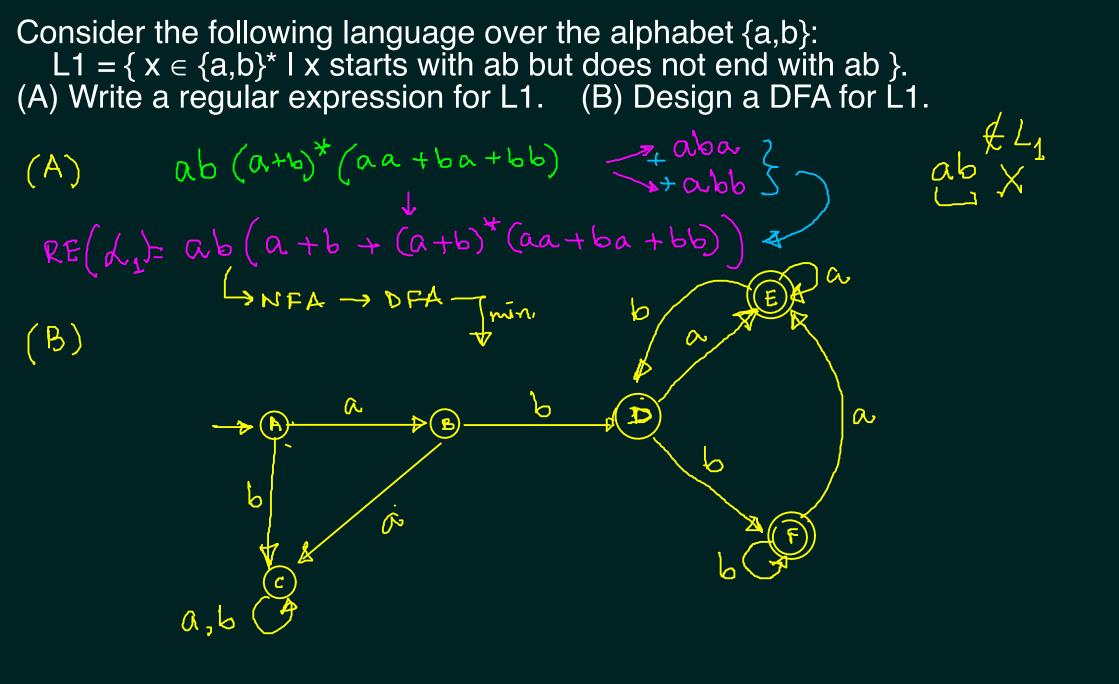
Let A,B be languages over an alphabet Σ , and C = A–B. Which of the following statements must be true? (A) If A and B are regular, then C is regular. (B) If A and C are regular, then B is regular. (C) If B and C are regular, then A is regular. (D) If C is regular, then A and B are regular. Regular is closed under intersection] (A) C = A-B = A A B - regular LATRUE La regular (B) FALSE $B = \{a^n b^n \mid n \ge 0\}$ $DFA(A): \rightarrow 0 \xrightarrow{\Sigma} G^{\Sigma}$ $C = \bigwedge A = \{e\} PFR(c) : \rightarrow O2\Sigma$ $A = (Q+b)^{*} B = \{a^{n}b^{n} \mid n \neq 0\} C = A - B + regular X$ $A = \mathcal{A}(b^*a^*) \qquad B = \{a^n b^n \mid n > 0\} \qquad C = \mathcal{A}(a^{\dagger}b^{\dagger})$ $A = \{ww^{rev} | w \in \{a, b\}^{*}\} = (a+b)^{*}$ (አ ል ል ֎ (C) FALSE $V = \phi$ $C = \phi$ $A = \{a^n b^n | n > 0\} \quad B = a^* b^*$ (D) FALSE $A = \{a^n b^n | n > 1\}$ $B = \{b^n a^n | n > 1\}$ $C = A - B = \phi$



The language L2 = { uvv'w | u,v,w \in {a,b}+ } is regular. Here, v' is the reverse of v. (a) Design a regular expression whose language is L2. (b) Convert the regular expression of Part (a) to an equivalent NFA. (c) Convert the NFA in Part (b) to an equivalent DFA. $\frac{1}{2} \left(\begin{array}{c} RE \\ - \end{array} \right) \left(\begin{array}{c} a+b \end{array} \right) \left(\begin{array}{c} a+$ (0)ai /6) DFA a,6

(C) Do yourself. (d) 1 ' Construct a regular expression over the alphabet {a,b,c} for L3 = { $x \in \{a,b,c\}^*$ | x has 4i+1 b's for some integer i >= 0 }. Construct an NFA from it, then build the equivalent DFA and minimize. + 65-71,5,9,13 $RE(L_3) =$ $((\alpha+c)^*b(\alpha+c)^*b(\alpha+c)^*b(\alpha+c)^*b(\alpha+c)^*)$ minimum? 6

Two regular expressions over the same alphabet are called equivalent if they generate the same language. Prove/Disprove the equivalence of the following pairs of regular expressions over the alphabet {a,b}. (A) $(ab+a)^*a$ and $a(ba+a)^*$ (B) $(ab^*a+ba^*b)^*$ and $(ab^*a)^*+(ba^*b)^*$ Equir A RHS Lus NUT X Courtesanfele String $\begin{array}{r} \text{REurs} \\ (ab+a)^{4}a = (a(b+b))^{4}a \end{array}$ $= \left(\left(b + \epsilon \right) \right) \left(a \right) \left(b + \epsilon \right) \left(a \right) \left(b + \epsilon \right) \left(a \right) \left(b + \epsilon \right) \right) \left(a \right) \left(b + \epsilon \right) \right) \left(b + \epsilon \right) \right) \left(b + \epsilon \right) \right) \left(b + \epsilon \right) \right) \left(b + \epsilon \right) \right) \left(b + \epsilon \right) \right) \left(b + \epsilon \right) \right) \left(b + \epsilon \right)$ $= \alpha \left((b + \epsilon) \alpha \right)^{*} = \alpha \left(b \alpha + \alpha \right)^{*} = R \mathcal{F}_{RHS}$

aabb Cheek bababa

