Let A and B be uncountable sets with $A \subseteq B$. Prove or disprove: A and B are equinumerous. $\rightarrow FALSE$

 $A = \mathbb{R} = \mathbb{C} \qquad B = \mathbb{2}^{\mathbb{R}} = \mathbb{2}^{\mathbb{C}} > \mathbb{C}$ $\mathbb{R} \text{ uncountable} \qquad |A| < |B|$ Solution. false

Let A be an uncountable set and B a countably infinite subset of A. Prove or disprove: A is equinumerous with A - B. RUE $|A| \leq |A-B|$? $|A-B| \geq |B-A|$ To prove, 3 (A-B) B= }b, b_{2}, b_{2} C = $\{C_1, C_2, C_3\}$ AEB C: \boldsymbol{C} C2:-1 $C \neq C \in B$

Prove that the real interval [0, 1) is equinumerous with the unit square $[0, 1) \times [0, 1)$. $\int where, R = [0,1]$ is injective => RISTENED |R|= |R×R|2 $i \rightarrow R \times R$ is injective => IRXR] <|RJ (ii) g: RXR -> R 、〇) (i) (1, 1) = (1, 1)injective map. frank . (1) $(0, \alpha_1, \alpha_2, \alpha_3, \dots)$ $(0, b_1, b_2, b_3, \dots)$ 0 · a, a, q2b2 a3b3 injective Goolm $|\mathcal{R}| = |\mathcal{C}|$ (0,1) (1+iy)

Let Z[x] denote the set of all univariate polynimials with integer coefficients. Prove that Z[x] is countable.

Define an operation \circ on $G = \mathbb{R}^* \times \mathbb{R}$ as $(a,b) \circ (c,d) = (ac, bc+d)$. Prove that, (G,\circ) is a non-abelian group. is a non-abelian group. $\alpha \in \mathbb{R}^{+}$, $c \in \mathbb{R}^{+}$ $\Rightarrow \alpha c \in \mathbb{R}^{+}$ $a \in \mathbb{R}^{+}$, $c \in \mathbb{R}^{+}$ $\Rightarrow \alpha c \in \mathbb{R}^{+}$ $b \in \mathbb{R}^{+}$ $a \in \mathbb{R}^{+}$ $\Rightarrow b \in \mathbb{R}^{+}$ $b \in \mathbb{R}^{+}$ $a \in \mathbb{R}^{+}$ $\Rightarrow b \in \mathbb{R}^{+}$ $b \in \mathbb{R}^{+}$ $a \in \mathbb{R}^{+}$ $\Rightarrow b \in \mathbb{R}^{+}$ - Closure : - Associative? - Identity ; $(a,b) \circ (1, \mathfrak{o}) = (a, b)$ - Inverse $(1,0)\circ(0,b)=(0,b)$ * abelian: * (Commutative) (N) $(a,b)^{-1}=?$ $(\lambda_{a},-b_{a})$ $(\lambda_{b})\circ(\lambda,y)$

Let G be a (multiplicative) group, and H, K are subgroups of G. Prove that, (a) $H \cap K$ is a subgroup of G. (b) $H \cup K$ is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$. (c) Define HK = {hk | $h \in H$, $k \in K$ }. Define KH analogously. Prove that, HK is a subgroup of G if and only if HK = KH. (a) S(Hn K) is 7 To Prove 2 also groups To Prove 1 cl: a, b G H N S A G H N A F K V b H N b G K =) ab E H A ab EK => ab E HAK (2) - assoc: (ab)(c)= (a)(bc) ~ 3- identity: EEHN EEK =) EEHNK (a) - inverse : a E H IK =) a E H A a E K =) a T E H A a T E K JAT CHOK (b) (="HSK => HVK=K '⇒" (HUK) subgroup but H\$K and K\$H N? , A→b hkehuk = hkeh V hkek = Heh? where her (a And) - hkeh V hkek = Heks where here (a And) IF MKEH hEH ==h-1EH 1 h-1(hk) = K EH J NKEK KEK EIT ETT => h G K.

$$HK = \{hk \mid h \in H, k \in K \} \quad h \in H, k \in K \}$$

$$KH = \{kk \mid h \in H, k \in K \}$$

$$(C) \xrightarrow{}' HK is a subgroup of G \quad fk \in HK \quad m \neq h \in K H$$

$$H, K are \quad (f, k)^{T} \in HK \xrightarrow{} k^{-1} h^{-1} \in HK \}$$

$$H, K are \quad (f, k)^{T} \in HK \xrightarrow{} k^{-1} h^{-1} \in HK \}$$

$$HK \subseteq KH \quad (given) \quad Or \in K \quad dosed(G, H) \quad q_{i} \in G \}$$

$$M_{i} = (h_{i}k_{i})(h_{2}k_{2}) [h_{3}k_{3}) = (h_{i}h_{2}' k_{i}' k_{2}' (h_{3}k_{3})$$

$$(h_{i}k_{i}) = (h_{i}h_{2}' k_{i}' k_{2}' (h_{3}k_{3})) = (h_{i}h_{2}' k_{i}' k_{2} (h_{3}k_{3})$$

$$(h_{i}k_{i})(h_{2}k_{2}) = (h_{i}h_{2}' k_{3}' k_{2}' (h_{3}k_{3})$$

$$(h_{i}k_{i})(h_{2}k_{2}) = (h_{i}h_{2}' k_{3}' k_{2}' (h_{3}k_{3})$$

$$(h_{i}k_{i})(h_{2}k_{2}) = (h_{i}h_{2}' k_{3}' k_{2}' (h_{3})$$

$$(h_{i}k_{i})(h_{2}k_{2}) = (h_{i}h_{2}' k_{3}' k_{2}' (h_{3})$$

$$(h_{i}k_{i})(h_{2}k_{2}) = (h_{i}h_{2}' h_{3}' h_{2}' (h_{3})$$

$$(h_{i}k_{i})(h_{2}k_{2}) = (h_{i}h_{2}' h_{3}' h_{2}' (h_{3})$$

$$(h_{i}k_{i})(h_{2}k_{2}) = (h_{i}h_{2}' h_{3}' h_{2}' h_{3})$$

$$(h_{i}k_{i})(h_{2} h_{3} h_{3}' h_{2}' h_{3})$$

$$(h_{i}k_{i})(h_{2} h_{3} h_{3$$

Let $R = \mathbb{Z} \times \mathbb{Z}$, and r, s be constant integers. Define two operations, on R as follows: (a,b)+(c,d) = (a+c,b+d) and (a,b)*(c,d) = (ad+bc+rac,bd+sac). Prove that, R is a ring under these operations, + and *.

7 probenties Solution () (a, 'o) + (S,d) = (S,d) + (a,b)

(2)

Let R1, R2, ..., Rn be rings. Prove that, the Cartesian product $(R1 \times R2 \times \cdots \times Rn)$ is a ring under component-wise addition and multiplication. Show that, if each Rk is a ring with identity, then so also is the product.

- du yourself-