Let $A, B, C \in \mathcal{U}$ are three arbitrary sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Prove that, $B = C$.

$$
B = B \cup (A \cap B)
$$

= B \cup (A \cap B) = (A \cup B) \cap (B \cup C)
= (A \cup C) \cap (B \cup C)
= (A \cap B) \cup C
= (A \cap C) \cup C = C

$$
a_{\text{max}} \times B
$$
\n
$$
B \subseteq C \quad \text{and} \quad B \subseteq C
$$
\n
$$
A_{\text{max}} \times C \subseteq C
$$
\n
$$
B \subseteq C \quad \text{and} \quad C \subseteq B
$$
\n
$$
B \subseteq C \quad \text{and} \quad C \subseteq B
$$

 $B = B \cap (A \cup B) = B \cap (A \cup C)$
= (A $\cap B$) = (B $\cap C$) $=$ (ANC) $U(BNC)$ $=$ $(A \cup B)$ \cap C $=(A\cup C)$ \cap $C = C$

For a function
$$
f : A \rightarrow B
$$
, define a function $\mathscr{F} : \mathscr{P}(A) \rightarrow \mathscr{P}(B)$ as $\mathscr{F}(S) = [f(S)]$ for all $S \subseteq A$. Prove that:
\n(a) \mathscr{F} is injective if and only if f is injective. (b) \mathscr{F} is surjective if and only if f is surjective.
\n $\sqrt{f(S)} = \{\hat{f}(S) \mid \mathscr{S} \in S\}$
\n $\binom{A}{2} \rightarrow \infty$
\n $\binom{B}{3} \rightarrow \infty$
\n $\binom{C}{4} \rightarrow \infty$
\n $\binom{C}{5} \rightarrow \infty$
\n $\binom{C}{6} \rightarrow \infty$
\n $\binom{C}{7} \rightarrow \infty$
\n $\binom{C}{8} \rightarrow \infty$
\n $\binom{C}{9} \rightarrow \infty$
\n $\binom{C}{1} \rightarrow \infty$
\n $\binom{C}{1} \rightarrow \infty$
\n $\binom{C}{2} \rightarrow \infty$
\n $\binom{C}{3} \rightarrow \infty$
\n $\binom{C}{4} \rightarrow \infty$
\n $\binom{C}{5} \rightarrow \infty$
\n $\binom{C}{6} \rightarrow \infty$
\n $\binom{C}{7} \rightarrow \infty$
\n $\binom{C}{8} \rightarrow \infty$
\n $\binom{C}{9} \rightarrow \infty$
\n $\binom{C}{1} \rightarrow \infty$ <

Let $f : A \to B$ be a function and σ an equivalence relation on B. Define a relation ρ on A as: a ρ a' if and only if $f(a) \sigma f(a')$. Prove that ρ is an equivalence relation on A. \vee **(a)** (b) Define a map $\bar{f}: A/\rho \to B/\sigma$ as $[a]_{\rho} \mapsto [f(a)]_{\sigma}$. Prove that f is well-defined. $29 - 50$ $\alpha \rho$ a \leftrightarrow f(a) of (a) (a) Reflexère. \int_{0}^{1} Réflative Symmetric! $i\frac{1}{2}f(a)$ or $f(a') \Rightarrow f(a')$ or $f(a)$ (given) $A/g=\{1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 10, 11, 12, 13, 14, 15, 17, 18, 19, 10, 11, 12, 13, 14, 15, 17, 18, 19, 10, 11, 12, 13, 14, 15, 17, 19,$ $A/\rho = \{[\mathbf{x}],[\mathbf{y}]\}$ Transitive: complete journself! Baz {[f(a)] [f(g)] (a) $[a_1]$ a_2 (a_3) a_3 (b_4) (c_4) $40 - 30$ $0⁰$ $\overline{u}_{0}⁰$ G_{\rightarrow} G_{1} $f_{a_{2}}$ \Rightarrow $f_{a_{1}}$ \circ $f_{a_{2}}$ $\Rightarrow [f(a_1)]_{\sigma} = [f(a_2)]_{\sigma \text{ with } \Omega_1 = \Omega_2}$ $x \in [1]$ $f(x)$ \rightarrow $f(x) = f(a_2)$ $\left(\cdot,\cdot\right)$

Let $f : A \to B$ be a function and σ an equivalence relation on B. Define a relation ρ on A as: $a \rho a'$ if and only if $f(a) \sigma f(a')$. Define a map $\bar{f} : A/\rho \to B/\sigma$ as $[a]_{\rho} \mapsto [f(a)]_{\sigma}$. Prove that \bar{f} is injective. $\vee\!\!\!\!\checkmark$ (c) Prove) or disprove: If f is a bijection, then so also is \bar{f} . $\rightarrow \tau \kappa \cup \varepsilon$ (d) (e) Prove or disprove) If \bar{f} is a bijection, then so also is $f. \rightarrow \text{FALSE}$ (C) if $[f(\alpha_1)]_{\alpha} = [f(\alpha_2)]_{\alpha}$ then $[\alpha_1]_{\rho} = [\alpha_2]_{\rho}$ $[\alpha_{x11}]_{\mu\mu\mu\mu}$
 $\left\{\n\begin{array}{ccc}\n\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow\n\end{array}\n\right\}$
 $\left\{\n\begin{array}{ccc}\n\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow\n\end{array}\n\right\}$
 $\left\{\n\begin{array}{ccc}\n\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow\n\$ $(\psi_{\alpha})[f(\alpha)]_{\alpha} \in B_{\alpha} \quad \exists [\alpha]_{\rho} \in A_{\rho} \quad \stackrel{s.t.}{\longrightarrow} \quad [a]_{\rho} \mapsto [f(a)]_{\rho}$ Since of is onto, it is $6B$, $3aC$ of st $\forall [\overline{b}]_{\sigma} \in \overline{B|}_{\rho} \quad \exists [\overline{a}]_{\rho} \in A|_{\rho}$ $[A]$ $\mapsto [f(a)] = [b]$ I is also onto

 $A = \{ (x, y), z \}$ $B = \{1, 2\}$ $\left\{\n\begin{array}{c}\n\int_{A} = \left\{\n\begin{array}{c}\n(x, \lambda), (x, \lambda), (y, \lambda), \\
(y, \lambda), (z, \lambda)\n\end{array}\n\right\},\n\end{array}\n\right.$ $(6) f(x) = f(y) = 1$ $f:A\rightarrow B$ $LAy = \{ [x] = [y], [z] \}$ $\xi(7) = 2$ NXT bijeltive $\left\{\n\begin{array}{c}\nG_B = \left\{\n\begin{array}{c}\n(1,1)\n\end{array}\n\right\}\n\end{array}\n\right\}$ $\overline{S}:A|_{\rho}\rightarrow B|_{\rho}$ $\begin{bmatrix} B|_{\infty} = \left\{ \begin{bmatrix} 1 \end{bmatrix}, \begin{bmatrix} 2 \end{bmatrix} \right\} \end{bmatrix}$ $\overline{\left(\left[\chi\right]-\left[\gamma\right]\right)} = \left[\begin{matrix}1\end{matrix}\right]$ $\int f(Ez) = [2] \int bijechve$ $FHMSE$ Conc counteressant le

[Genesis of rational numbers] Define a relation ρ on $A = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ as $(a, b) \rho$ (c, d) if and only if $ad = bc$. Prove that ρ is an equivalence relation. Argue that A/ρ is essentially the set Q of rational numbers.

$$
Reflexive: (a,b) $f(x,b)$ $\Leftrightarrow ab = b \infty$
$$

\n
$$
Symmethic: if (a,b) $f(x,a) \Rightarrow f^{(b)}(c,a) \Rightarrow f^{(b)}(c,a) $f^{(b)}(c,a)$
\n
$$
= ad \pm bc \Leftrightarrow cb = da \Leftrightarrow b
$$

\n
$$
Tramishive: P.T. (a,b) $f(c,a)$ and (c,a) $f(e,f)$
\n
$$
ad = bc \qquad cf = de
$$

\n
$$
ad = bc \qquad cf = de
$$

\n
$$
ad = bc \qquad cf = de
$$

\n
$$
ad = bc \qquad cf = de
$$

\n
$$
ad = bc \qquad cf = de
$$

\n
$$
ad = bc \qquad cf = de
$$

\n
$$
ad = bc \qquad cf = de
$$

\n
$$
a \qquad b \qquad f = be
$$

\n
$$
a \qquad f = be
$$

\n<
$$$
$$

Let ρ be a total order on A. We call ρ a well-ordering of A if every non-empty subset of A contains a least element. In this exercise, we plan to construct a well-ordering of $A = \mathbb{N} \times \mathbb{N}$.

(a) Define a relation ρ on A as (a, b) ρ (c, d) if and only if $a \leq c$ or $b \leq d$.

(b) Define a relation σ on A as (a, b) σ (c, d) if and only if $a \le c$ and $b \le d$.

(c) Define a relation \leq_L on A as $(a, b) \leq_L (c, d)$ if either (i) $a < c$ or $a = c$ and $b \leq d$. $\leq \infty$ TO Prove or disprove: ρ , σ , \leq_L is a well-ordering of A.

