Let $A, B, C \in \mathcal{U}$ are three arbitrary sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Prove that, B = C.

$$B = B \cup (A \cap B)$$

$$= B \cup (A \cap C) = (A \cup B) \cap (B \cup C)$$

$$= (A \cup C) \cap (B \cup C)$$

$$= (A \cap B) \cup C$$

$$= (A \cap C) \cup C = C$$

$$= (A \cap C) \cup C = C$$

$$B = B \cap (A \cup B) = B \cap (A \cup C)$$

$$= (A \cap B) \cup (B \cap C)$$

$$= (A \cap C) \cup (B \cap C)$$

$$= (A \cup B) \cap C$$

$$= (A \cup C) \cap C = C$$

For a function $f: A \to B$, define a function $\mathscr{F}: \mathscr{P}(A) \to \mathscr{P}(B)$ as $\mathscr{F}(S) = |f(S)|$ for all $S \subseteq A$. Prove that:

(a) \mathscr{F} is injective if and only if f is injective. (b) \mathscr{F} is surjective if and only if f is surjective.

wf(S) = {f(8) | SES}

(A) ">" F is injective (one-to one)

The surjective (one-to one)

$$f(s)f(s_2) = b_2$$

mems, $f(s_1) = f(s_2) \Rightarrow s_1 = s_2$ (given)

 $f(s_1) = f(s_2)$

Fig. 1 = $s_1 = s_2 = s_1$

Fig. 1 = $s_2 = s_1 = s_2 = s_2$

The surjective of the surject

DO IT YOURSELF)

Let $f: A \to B$ be a function and σ an equivalence relation on B. Define a relation ρ on A as: $a \rho a'$ if and only if $f(a) \sigma f(a')$.

(a) Prove that ρ is an equivalence relation on A.

(b) Define a map $\bar{f}: A/\rho \to B/\sigma$ as $[a]_{\rho} \mapsto [f(a)]_{\sigma}$. Prove that \underline{f} is well-defined.

(a) Reflexive.
$$a \ p \ a \Leftrightarrow f(a) \ a \ f(a)$$

Symmetric:

The symmetric:

The f(a) or $f(a') \Rightarrow f(a')$ or $f(a)$ (given)

If $f(a) = f(a') = f(a)$

Transitive:

Complete yourself!

P: $f(a) = f(a) = f(a)$

and $f(a) = f(a) = f(a)$

and $f(a) = f(a) = f(a)$

A/p=\{\text{F(a)}\}

F(a) \quad \text{F(a)}

\text{F(a)} \quad \qq\quad \quad \quad \quad

Let $f: A \to B$ be a function and σ an equivalence relation on B. Define a relation ρ on A as: $a \rho a'$ if and only if $f(a) \sigma f(\overline{a'})$. Define a map $\overline{f}: A/\rho \to B/\sigma$ as $[a]_{\rho} \mapsto [f(a)]_{\sigma}$.

- (c) Prove that \bar{f} is injective.
- (d) Prove or disprove: If f is a bijection, then so also is \bar{f} . $\rightarrow \top R \cup E$
- (e) Prove or disprove. If \bar{f} is a bijection, then so also is $f. \to FALSE$

(c) if
$$[f(\alpha_2)] = [f(\alpha_2)]_{\alpha}$$
 then $[\alpha_1]_{\beta} = [\alpha_2]_{\beta}$ [Proverting $f(\alpha_3)$ or $f(\alpha_2) \leftrightarrow \alpha_1 \beta \alpha_2 \Rightarrow [\alpha_1]_{\beta} = [\alpha_2]_{\beta}$ [A) f is onto/surjective (remaining to be prove)

($f(\alpha_3) = [\alpha_1]_{\beta} \in [\alpha_2]_{\beta} = [\alpha_2]_{\beta}$

($f(\alpha_3) = [\alpha_1]_{\beta} \in [\alpha_2]_{\beta} = [\alpha_2]_{\beta}$

($f(\alpha_3) = [\alpha_2]_{\beta} \in [\alpha_2]_{\beta} = [\alpha_3]_{\beta} = [\alpha_2]_{\beta}$

Site $[\alpha_1]_{\beta} \mapsto [\beta_1]_{\alpha} = [\alpha_2]_{\beta} =$

$$A = \{x, y, \overline{z}\}$$

$$B = \{1, 2\}$$

$$\{x, y, \overline{z}\}$$

$$A = \{x, y, \overline{z}\}$$

$$A$$

[Genesis of rational numbers] Define a relation ρ on $A = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ as (a,b) ρ (c,d) if and only if ad = bc. Prove that ρ is an equivalence relation. Argue that A/ρ is essentially the set \mathbb{Q} of rational numbers.

Reflexive:
$$(a,b)$$
 $f(a,b)$ $f(a,b)$ \Leftrightarrow $ab = b co$

Symmetric: if (a,b) $f(c,d)$ \Rightarrow thuc(c,t) $f(a,b)$ \Rightarrow This you prove!

Transitive: P.T. (a,b) $f(c,d)$ and (c,d) $f(e,f)$ \Rightarrow $af = b c$
 (a,b) \Rightarrow $af = b$
 \Rightarrow $af = b$
 (a,b) \Rightarrow $af = b$
 (a,b) \Rightarrow $af = b$
 (a,b)

Let ρ be a total order on A. We call ρ a well-ordering of A if every non-empty subset of A contains a least element. In this exercise, we plan to construct a well-ordering of $A = \mathbb{N} \times \mathbb{N}$.

- (a) Define a relation ρ on A as (a,b) ρ (c,d) if and only if $a \leq c$ or $b \leq d$.
- (b) Define a relation σ on A as (a, b) σ (c, d) if and only if $a \leq c$ and $b \leq d$.
- (c) Define a relation \leq_L on A as $(a,b)\leq_L (c,d)$ if either (i) a< c or a=c and $b\leq d$. Prove or disprove: ρ, σ, \leq_L is a well-ordering of A.

