Tutorial 8 Time Complexity Classes

- 1. Prove that the following languages (defined over graphs) are in **P**.
 - (a) BIPARTITE the set of all bipartite graphs. That is, $G = (V, E) \in \mathsf{BIPARTITE}$ if V can be partitioned into two sets V_1, V_2 such that every edge in E is adjacent to a vertex in V_1 and a vertex in V_2 .
 - (b) TRIANGLE-FREE the set of all graphs that do not contain a triangle (where triangle is a set of three distinct vertices that are mutually connected).
- 2. Normally, we assume that numbers are represented as strings using the binary basis. That is, a number n is represented by the sequence $x_0, x_1, \ldots, x_{\log n}$ such that $n = \sum_{i=0}^{\log n} x_i 2^i$. However, we could have used other encoding schemes. If $n \in \mathbb{N}$ and $b \geq 2$, then the representation of n in base b, denoted by $\lfloor n \rfloor_b$ is obtained as follows: first represent n as a sequence of digits in $\{0, \ldots, b-1\}$, and then replace each digit by a sequence of zeroes and ones. The unary representation of n, denoted by $\lfloor n \rfloor_1$ is the string 1^n (i.e., a sequence of n ones).
 - (a) Show that choosing a different base of representation (other than unary) will make no difference to the class **P**. That is, show that for every subset S of the natural numbers, if we define $L_S^b = \{ \lfloor n \rfloor_b : n \in S \}$ then for every $b \ge 2$, $L_S^b \in \mathbf{P}$ iff $L_S^2 \in \mathbf{P}$.
 - (b) Show that choosing the unary representation makes a difference by showing that the following language is in **P**.

UNARYFACTORING = { $\langle \lfloor n \rfloor_1, \lfloor k \rfloor_1 \rangle$: there is a $j \leq k$ dividing n}.

- 3. Prove that $\mathbf{P} = \mathbf{coP}$ and $\mathbf{P} \subseteq \mathbf{NP} \cap \mathbf{coNP}$.
- 4. Assuming $NP \neq coNP$, show that no NP-complete problem can be in coNP.
- 5. Show that the halting problem is **NP**-hard.
- 6. Let

DOUBLESAT = { $\langle \phi \rangle$: ϕ is a CNF formula having at least two satisfying assignments}.

Show that DOUBLESAT is NP-complete.

7. (a) A vertex cover in a graph G = (V, E) is a set of vertices $S \subseteq V$ such that every edge of G is incident on at least one vertex in S. Show that the language

 $\mathsf{VERTEXCOVER} = \{(G, k) \mid \text{graph } G \text{ has a vertex cover of size } \leq k\}$

is **NP**-complete.

(b) Let S be a set and let $C = \{X_1, \ldots, X_n\}$ be a collection of n subsets of S (for each $i \in [1, n], X_i \subseteq S$). A set S', with $S' \subseteq S$, is called a hitting set for C if every subset in C contains at least one element in S', i.e., $|X_i \cap S'| \ge 1$ for each $i \in [1, n]$. Let HITSET be the language $\{\langle C, k \rangle : C \text{ has a hitting set of size } k\}$. Prove that HITSET is **NP**-complete.

Example $S = \{a, b, c, d, e, f, g\}, C = \{\{a, b, c\}, \{d, a\}, \{d, e, f\}, \{g\}\}$

- k = 2, no hitting sets exist.
- $k = 3, S' = \{a, d, g\}$ (other choices exist).

Hint: Try reducing from VERTEXCOVER.

8. (Scaling recource bounds.) Let $\mathbf{CL}_1, \mathbf{CL}_2$ denote some time/space complexity classes. Show that if $\mathbf{CL}_1(f(n)) \subseteq \mathbf{CL}_2(g(n))$, then $\mathbf{CL}_1(f(n^c)) \subseteq \mathbf{CL}_2(g(n^c))$.