
CS60050: Foundations of Computing Science Autumn, 2021

Tutorial 8

Time Complexity Classes

1. Prove that the following languages (defined over graphs) are in P.

(a) BIPARTITE – the set of all bipartite graphs. That is, G = (V,E) ∈ BIPARTITE if
V can be partitioned into two sets V1, V2 such that every edge in E is adjacent to a
vertex in V1 and a vertex in V2.

Solution: Choose a vertex v ∈ V and perform a breadth-first search (BFS) starting at v as
the root, colouring vertices visited in odd interations red and those visited in even iterations
black. At the end, if there exists an edge whose end points are both coloured with the same
colour, then G /∈ BIPARTITE. Else, G ∈ BIPARTITE. In the worst case, this algorithm
would take O(n2) time where n = |V |.

(b) TRIANGLE-FREE – the set of all graphs that do not contain a triangle (where triangle
is a set of three distinct vertices that are mutually connected).

Solution: Let n = |V |. Check all

(
n

3

)
sets of vertices and check if they are mutually

connected. If none of them are, then G ∈ TRIANGLE− FREE. Since

(
n

3

)
= O(n3), the

algorithm runs in polynomial time.

2. Normally, we assume that numbers are represented as strings using the binary basis. That
is, a number n is represented by the sequence x0, x1, . . . , xlogn such that n =

∑logn
i=0 xi2

i.
However, we could have used other encoding schemes. If n ∈ N and b ≥ 2, then the
representation of n in base b, denoted by xnyb is obtained as follows: first represent n
as a sequence of digits in {0, . . . , b − 1}, and then replace each digit by a sequence of
zeroes and ones. The unary representation of n, denoted by xny1 is the string 1n (i.e., a
sequence of n ones).

(a) Show that choosing a different base of representation (other than unary) will make
no difference to the class P. That is, show that for every subset S of the natural
numbers, if we define Lb

S = {xnyb : n ∈ S} then for every b ≥ 2, Lb
S ∈ P iff L2

S ∈ P.

Solution: Let D(k) (resp. M(k)) be the time complexity of division (resp. multiplication)
of two k-bit numbers. Suppose that Lb

S ∈ P. Then there exists a Turing machine M that
runs in polynomial time recognising Lb

S . Any k-bit input xxy2 (x ∈ N) can be converted to
base-b representation in time D(k) · logb x, which is polynomial in k. The resulting string
xxyb can then be provided as input to M, thereby recognising L2

S . In other words, Lb
S ∈ P

implies L2
S ∈ P. Similarly, an input string of length k for Lb

S (i.e., a base-b number) can be
converted to its binary representation in M(k) · logb x time. This shows that L2

S ∈ P implies
Lb
S ∈ P.

(b) Show that choosing the unary representation makes a difference by showing that the
following language is in P.

UNARYFACTORING = {〈xny1, xky1〉 : there is a j ≤ k dividing n}.

Solution: Check for divisibility of n by all numbers ≤ k. This takes k steps which is
polynomial in the size (n+ k) of the input.

3. Prove that P = coP and P ⊆ NP ∩ coNP.

Solution: Let L ∈ P. Then ¬L can be decided in polynomial time – run the TM deciding L
and flip its decision. So, P = coP.

We know that P ⊆ NP. Now, a language L ∈ coNP iff ¬L ∈ NP. Let L ∈ P . Then
¬L ∈ coP = P ⊆ NP. So, by the definition of coNP, ¬¬L = L ∈ coNP. Therefore,
P ⊆ coNP.

4. Assuming NP 6= coNP, show that no NP-complete problem can be in coNP.

Solution: Suppose that L is an NP-complete language and L ∈ coNP. Then for every language
L′ ∈ NP, we have L′ ≤p L and since L ∈ coNP, L′ ∈ coNP. So, we have NP ⊆ coNP. Now
consider any L′ ∈ coNP. Then ¬L′ ∈ NP and ¬L′ ≤p L. Using the same reduction, we can say
L′ ≤p ¬L and ¬L ∈ NP, since L ∈ coNP. So, we have L′ ∈ NP and hence coNP ⊆ NP, thus
implying that NP = coNP – contradiction!

5. Show that the halting problem is NP–hard.

Solution: HP is NP–hard if L ≤p HP for all L ∈ NP. Equivalently HP is NP–hard if
SAT ≤p HP. We show a polynomial time computable function mapping a formula φ to a TM N
and a string x such that φ ∈ SAT iff (N , x) ∈ HP. Let M be a polynomial time deterministic
machine that takes as input a formula φ, an assignment z and accepts iff z satisfies φ. Such a
TM exists since SAT ∈ NP. Construct N so that on input x it does the following:

• Parse x as a Boolean formula over n vairables.

• For all assignments z ∈ {0, 1}n, run M(x, z) to check if z satisfies x; accept and halt if M
accepts.

• If x is not satisfied by any z, enter a trivial loop.

Map φ to N , φ. This map can be computed in time polynomial in |φ| (the size of φ) irrespective
of fact that N ’s running time would be exponential in the |φ|. Now, φ ∈ SAT iff ∃z such that
M(φ, z) accepts iff N halts on input φ iff (N , φ) ∈ HP. This completes the reduction SAT ≤p HP.

6. Let

DOUBLESAT = {〈φ〉 : φ is a CNF formula having at least two satisfying assignments}.

Show that DOUBLESAT is NP–complete.

Solution: DOUBLESAT ∈ NP – the certificate is a pair of assignments of 0, 1 values to the
variables of φ, each of which can be checked in polynomial time (in fact, in linear time) for
whether they satisfy φ or not.

To show that DOUBLESAT is NP–hard, we show that SAT ≤p DOUBLESAT. Let φ be an
instance of SAT defined over n variables u1, . . . , un. The reduction picks a new variable un+1

Page 2

and generates φ′ = φ ∧ (x ∨ x̄) as the instance of DOUBLESAT. If there’s a satisfying assignment
z ∈ {0, 1}n for φ, then there are two assignments z1 = z||0 (indicating un+1 = 0) and z2 = z||1
(indicating un+1 = 1) for φ′. So φ ∈ SAT =⇒ φ′ ∈ DOUBLESAT. Now, if φ′ has 2 satisfying
assignments, all clauses except the last one, which is nothing but φ, would be satisfiable by at
least one assignment. Therefore, φ′ ∈ DOUBLESAT =⇒ φ ∈ SAT.

7. (a) A vertex cover in a graph G = (V,E) is a set of vertices S ⊆ V such that every edge
of G is incident on at least one vertex in S. Show that the language

VERTEXCOVER = {(G, k) | graph G has a vertex cover of size ≤ k}

is NP-complete.

Solution: VERTEXCOVER is in NP – given a subset S ⊆ V of size ≤ k, it can be verified
in O(|E|) time whether S is a vertex cover.

To show that VERTEXCOVER is NP-hard, we provide a reduction from 3-SAT. Let φ be an
instance of 3-SAT, consisting of m clauses over n variables u1, u2, . . . , un. The reduction will
map φ to a graph G = (V,E) and integer k with |V | = 3m+2n, |E| = 6m+n and k = 2m+n.
G is constructed as follows. 2n vertices correspond to all literals u1,¬u1, u2,¬u2, . . . , un,¬un
and 3m vertices correspond to the literals present in each clause i.e., for each clause
(x1 ∨ x2 ∨ x3), V would contain 3 separate vertices corresponding to the literals x1, x2, x3.
Include in E the following edges: {ui,¬ui} in E for all i ∈ [1, n]; {x1, x2}, {x2, x3}, {x1, x3}
for each clause (x1∨x2∨x3); and finally for each clause (x1∨x2∨x3), include edges {xi, uk}
(or {xi,¬uk}) if xi = uk (or xi = ¬uk).

Suppose that φ ∈ 3-SAT. Define the set S as follows: if ui = 1, then include vertex ui
in S; otherwise include vertex ¬ui in S. This ensures that all edges of the form {ui,¬ui}
are covered. Each clause (x1 ∨ x2 ∨ x3) contains at least one true literal, say x1. The edge
connecting x1 to its equivalent literal is already covered by the first set of edges added to
S. Now include the vertices corresponding to the other two literals x2, x3 in S. This would
ensure that the edges connecting x1, x2, x3 and those connecting x2, x3 to the equivalent
literals are covered. S therefore is a vertex cover of G and contains n+ 2m = k vertices as
required.

Suppose that G ∈ VERTEXCOVER i.e., G has a vertex cover S of size k = n+ 2m. S musst
contain either ui or ¬ui for each i in order to cover edges {ui,¬ui}. Also S must contain
2 vertices from each triangle corresponding to clauses. Now, assign ui = 1 if ui ∈ S and
ui = 0 if ¬ui ∈ S. We now argue that this is a satisfying assignment for φ. Consider a
clause x1 ∨ x2 ∨ x3 of φ. Two of the vertices in the corresponding triangle would be in S.
Without loss of generalisty, suppose that x1, x2 ∈ S and x3 = uk. The edge {x3, uk} must
be covered by uk and not x3. That is uk ∈ S and is hence set to 1 as a result of which the
clause evaluates to 1. Since this holds for all clauses, φ ∈ 3-SAT.

(b) Let S be a set and let C = {X1, . . . , Xn} be a collection of n subsets of S (for each
i ∈ [1, n], Xi ⊆ S). A set S′, with S′ ⊆ S, is called a hitting set for C if every subset
in C contains at least one element in S′, i.e., |Xi ∩ S′| ≥ 1 for each i ∈ [1, n]. Let
HITSET be the language {〈C, k〉 : C has a hitting set of size k}. Prove that HITSET
is NP–complete.

Example S = {a, b, c, d, e, f, g}, C = {{a, b, c}, {d, a}, {d, e, f}, {g}}
• k = 2, no hitting sets exist.

• k = 3, S′ = {a, d, g} (other choices exist).

Page 3

Hint: Try reducing from VERTEXCOVER.

Solution: Clearly, HITSET ∈ NP – guess a set S′ of size k and for each set Xi ∈ C, check
for inclusion of elements of S′ in Xi. This can be done in nk time.

We now show that VERTEXCOVER ≤p HITSET. We need to transform an instance
〈G = (V,E), k〉 into an instance 〈S,C, k〉 such that 〈G = (V,E), k〉 ∈ VERTEXCOVER
iff 〈S,C, k〉 ∈ HITSET. Set S = V and for each edge {u, v} ∈ E, create a set Xu,v = {u, v}
and add it to C.

Suppose that V ′ ⊆ V is a vertex cover for G fo size k, then for every edge {u, v} ∈ E either
u ∈ V ′ or v ∈ V ′. That is, |Xu,v ∩ V ′| ≥ 1 thus giving us a hitting set S′ = V ′ of size k.
Suppose that S′ ⊆ S is a hitting set of size k for C. Then |S′ ∪ Xu,v| ≥ 1 for every Xu,v

with {u, v} ∈ E, that is, choosing V ′ = S′ ensures that V ′ contains at least one end-point
of every edge.

8. (Scaling recource bounds.) Let CL1,CL2 denote some time/space complexity classes.
Show that if CL1(f(n)) ⊆ CL2(g(n)), then CL1(f(nc)) ⊆ CL2(g(nc)).

Solution: Let L ∈ CL1(f(nc)) and let M be a TM deciding L with resource bound f(nc) i.e.,
M decides L in f(nc) time/space. The statement trivially holds for c = 1. For c ≥ 2, define

L′ = {〈x‖0‖1|x|
c−|x|−1〉 : x ∈ L}.

Define M′ that accepts input y iff y is of the form x‖0‖1|x|c−|x|−1 and M accepts x. M′ runs in
time/space O(f(|x|c)). But O(f(|x|c)) = O(f(|y|)) implying that L′ ∈ CL1(f(n)) ⊆ CL2(g(n)).
Hence there is a TM N ′ deciding L′ using g(n) time/sapce. Define a machine N deciding L as
follows: N (x) = N ′(x‖0‖1|x|c−|x|−1). Clearly N runs in time/space g(|x01|x|

c−|x|−1|) = g(|x|c).
Therefore L ∈ CL2(g(nc)).

Page 4

