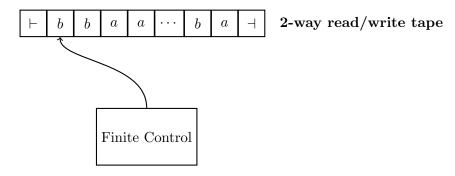
Tutorial 6

Turing Machines, Recursive and R.E. Sets

- 1. Design a total Turing machine that accepts the set $\{0^{2^i} \mid i \geq 1\}$.
- 2. A <u>linear bounded automaton</u> (LBA) is exactly like a 1-tape TM, except that the input string $x \in \Sigma^*$ is enclosed in left and right endmarkers \vdash and \dashv which may not be overwritten. The machine is constrained never to move left of \vdash or right of \dashv . It is allowed to read/write between these markers.



- (a) Give a rigorous formal definition of deterministic linearly bounded automata, including a definition of configurations and acceptance.
- (b) Let \mathcal{M} be an LBA with state set Q of size k and tape alphabet Γ of size m. How many possible configurations are there on input x with |x| = n?
- (c) Argue that it is possible to detect in finite time whether an LBA loops on a given input.

Hint: Use part (b).

- 3. Show that the class of recursively enumerable sets is closed under union and intersection.
- 4. Prove that a language L is recursive if and only if there is an enumeration machine enumerating the strings of L in a non-decreasing order of length (string of the same length may be arranged in lexicographic order). For example, strings of $0, 1^*$ would be arranged as 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111,
- 5. Is the set $\{\mathcal{M} \mid \mathcal{L}(\mathcal{M}) \text{ contains at least } 100 \text{ elements} \}$ recursively enumerable.