Countability

- 1. Let A and B be uncountable sets with $A \subseteq B$. Prove or disprove: A and B are equinumerous.
- 2. Let A be an uncountable set and B a countably infinite subset of A. Prove or disprove: A is equinumerous with A B.
- 3. Prove that the real interval [0,1) is equinumerous with the unit square $[0,1) \times [0,1)$.
- 4. Define a relation \sim on \mathbb{R} such that $a \sim b$ if and only if $a b \in \mathbb{Q}$. Answer the following:
 - (a) Prove that \sim is an equivalence relation.
 - (b) Is the set \mathbb{R}/\sim of all equivalence classes of \sim countable?
- 5. Let $\mathbb{Z}[x]$ denote the set of all univariate polynimials with integer coefficients. Answer the following:
 - (a) Prove that $\mathbb{Z}[x]$ is countable.
 - (b) A real or complex number a is called algebraic if f(a) = 0 for some non-zero $f(x) \in \mathbb{Z}[x]$. Let \mathbb{A} denote the set of all algebraic numbers. Prove that \mathbb{A} is countable.
- 6. Let $\mathbb{Z}[x, y]$ be the set of all bivariate polynomials with integer coefficients. Answer the following:
 - (a) Prove that $\mathbb{Z}[x, y]$ is countable.
 - (b) Let $V = \{(a, b) \in \mathbb{C} \times \mathbb{C} \mid f(a, b) = 0 \text{ for some nonzero } f(x, y) \in \mathbb{Z}[x, y]\}$. Is V countable?
- 7. A set $S \subseteq \mathbb{R}$ is called bounded if S has both a lower bound and an upper bound. Answer whether the following sets are countable/uncountable?
 - (a) The set of all bounded subsets of \mathbb{Z} .
 - (b) The set of all bounded subsets of \mathbb{Q} .

Algebraic Structures

- 1. Let R_1, R_2, \ldots, R_n be rings. Prove that, the Cartesian product $(R_1 \times R_2 \times \cdots \times R_n)$ is a ring under component-wise additionand multiplication. Show that, if each R_i is a ring with identity, then so also is the product.
- 2. Let $R = \mathbb{Z} \times \mathbb{Z}$, and r, s be constant integers. Define two operations, on R as follows: (a,b) + (c,d) = (a+c,b+d) and (a,b) * (c,d) = (ad+bc+rac,bd+sac). Prove that, R is a ring under these operations, + and *.
- 3. Let R be a commutative ring with identity. Prove that, the set R[x] of all univariate polynomials with coefficients from R is again a commutative ring with identity (under polynomial addition and multiplication).
- 4. Define an operation \circ on $G = \mathbb{R}^* \times \mathbb{R}$ as $(a, b) \circ (c, d) = (ac, bc + d)$. Prove that, (G, \circ) is a non-abelian group.
- 5. Let G be a (multiplicative) group, and H, K are subgroups of G. Prove that,
 - (a) $H \cap K$ is a subgroup of G.
 - (b) $H \cup G$ need not be a subgroup of G.
 - (c) $H \cup K$ is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$.
 - (d) Define $HK = \{hk \mid h \in H, k \in K\}$. Define KH analogously. Prove that, HK is a subgroup of G if and only if HK = KH.
- 6. Let G be a non-abelian group, and $a, b \in G$. Prove that, ord(ab) = ord(ba).
- 7. Let G be the set of all points on the hyperbola xy = 1 along with the point $(0, \infty)$ at infinity. Define $(a, \frac{1}{a}) + (b, \frac{1}{b}) = (a + b, \frac{1}{a+b})$. Prove that, G is an abelian group under this operation.