Set, Relation and Function

- 1. Let $A, B, C \in \mathcal{U}$ are three arbitrary sets such that, $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Prove that, B = C.
- 2. For a function, $f : A \to B$, define a function $\mathcal{F} : \mathcal{P}(A) \to \mathcal{P}(B)$ as $\mathcal{F}(S) = f(S)$ for all $S \subseteq A$. Prove that:
 - (a) \mathcal{F} is injective if and only if f is injective.
 - (b) \mathcal{F} is surjective if and only if f is surjective.
- 3. Let $f : A \to B$ be a function and σ an equivalence relation on B. Define a relation ρ on A as: $a \rho a'$ if and only if $f(a) \sigma f(a')$. Answer the following:
 - (a) Prove that, ρ is an equivalence relation on A.
 - (b) Prove or disprove: ρ defines a partial order over A.
 - (c) Define a map $\overline{f}: A/\rho \to B/\sigma$ as $[a]_{\rho} \mapsto [f(a)]_{\sigma}$. Prove that, \overline{f} is well-defined.
- Let f : A → B be a function and σ an equivalence relation on B. Define a relation ρ on A as: a ρ a' if and only if f(a) σ f(a'). Define a map f

 if A/ρ → B/σ as [a]_ρ → [f(a)]_σ. Answer the following:
 - (a) Prove that, \overline{f} is injective.
 - (b) Prove or disprove: If f is a bijection, then so also is \overline{f} .
 - (c) Prove or disprove: If \overline{f} is a bijection, then so also is f.
- 5. [Genesis of rational numbers] Define a relation ρ on $A = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ as $(a, b) \rho(c, d)$ if and only if ad = bc. Prove that ρ is an equivalence relation. Argue that A/ρ is essentially the set \mathbb{Q} of rational numbers.
- 6. Let ρ be a total order on A. We call ρ a *well-ordering* of A if every non-empty subset of A contains a least element. In this exercise, we plan to construct a well-ordering of $A = \mathbb{N} \times \mathbb{N}$.
 - (a) Define a relation ρ on A as $(a, b) \rho(c, d)$ if and only if $a \leq c$ or $b \leq d$.
 - (b) Define a relation σ on A as $(a, b) \sigma(c, d)$ if and only if $a \leq c$ and $b \leq d$.
 - (c) Define a relation \leq_L on A as $(a, b) \leq_L (c, d)$ if either (i) a < c or a = c and $b \leq d$.

Prove or disprove: ρ , σ , \leq_L is a well-ordering of A.

- 7. Let A be the set of all functions $\mathbb{N}_0 \to \mathbb{R}^+$. Define a relation Θ on A as $f \Theta g$ if and only if $f = \Theta(g)$. Define a relation O on A as f O g if and only if f = O(g). Answer the following:
 - (a) Prove that Θ is an equivalence relation.
 - (b) Argue that O is not a partial order.

Now, let us redefine the relation O on A/Θ as [f] O [g] if and only if f = O(g). Answer the following:

- (c) Establish that the relation *O* is well-defined.
- (d) Prove that O is a patial order on A/Θ .
- (e) Prove or disprove: O is a total order on A/Θ .
- (f) Prove or disprove: A/Θ is a lattice under O.