Indian Institute of Technology Kharagpur Department of Computer Science and Engineering

Foundations of Computing Science (CS60005)		Autumn Semester, 2021-2022	
Test 3 [Marks $= 30$]	Date: 17-Nov-2021, 08:15	5 - 09:30	Venue: Online
There are ALL THREE	E questions. State all assumptions	vou make. Be	brief and precise.

1. (a) Prove or disprove: $\{\mathcal{M} \mid \mathcal{M} \text{ runs in time } O(n^3)\}$ is undecidable.

(b) For a set $A \subseteq \Sigma^*$ (with $|\Sigma| \ge 2$), define $A^{\mathbf{R}} = \{w^{\mathbf{R}} | w \in A\}$ where $w^{\mathbf{R}}$ denotes w reversed. Is it decidable for a given TM \mathcal{M} whether $L(\mathcal{M}) = L(\mathcal{M})^{\mathbf{R}}$? Justify your answer. 6

|4|

2

3

2

3

5

|5|

- 2. Answer true or false. Justify your answer.
 - (a) All **NP**-Hard problems are decidable.
 - (b) If L_1, L_2 are **NP**-Complete, then so is $L_1 \cup L_2$.
 - (c) If every NP-hard language is PSPACE-hard, then PSPACE = NP.
 - (d) $\mathbf{polyL} \neq \mathbf{polyNL}$, where $\mathbf{polyL} = \bigcup_{c>0} \mathbf{DSPACE}(\log^c n)$ and $\mathbf{polyNL} = \bigcup_{c>0} \mathbf{NSPACE}(\log^c n)$.
- 3. (a) Consider a variant M-3SAT (*minimal* 3SAT) of 3SAT defined as follows: a Boolean formula $\phi \in M$ -3SAT if there exists atleast one satisfying assignment for ϕ where exactly one literal in every clause is true. Show that M-3SAT is **NP**-complete.
 - (b) Let A, B be two $n \times n$ Boolean matrices. Entries of the Boolean product $C = A \cdot B$ are defined as $C_{ij} = \bigvee_{k=1}^{n} (a_{ik} \wedge b_{kj})$ for $1 \leq i, j \leq n$. Describe a logspace algorithm to compute $A \cdot B$ given A, B.