
Indian Institute of Technology Kharagpur

Department of Computer Science and Engineering

Foundations of Computing Science (CS60005) Autumn Semester, 2021-2022

Test - 2 [Marks: 30] Date: 06-Oct-2021 (Wednesday), 8:15am – 9:30am Venue: Online

[Instructions: There are THREE questions. Answer ALL questions. Be brief and precise.]

Q1. One of the following languages over the alphabet {a, b} is regular; the other one is not regular. Identify which one is

what and Justify. No credit will be given only for correct identification (without justification provided).

(a) L1 =
{

αβα
∣

∣ α ∈ {a, b}+ and β ∈ {a, b}+
}

(b) L2 =
{

αβα
∣

∣ α ∈ {a}+ and β ∈ {a, b}+
}

In particular, do the following: (i) For the one which is regular, give the corresponding Regular Expression as well

as the minimum-state deterministic finite automaton (DFA) both; and (ii) For the one which is not regular, give a

proof using the Pumping Lemma. [Marks: (3 + 3) + 4 = 10]

Solution:

(a) L1 is not regular.

For proving this, suppose that L1 is regular. Let k ∈ N be a pumping lemma constant for L1. Consider the string

abka2bk which belongs to L1 (here α = abk and β = a). Using the notations of the pumping lemma, take x = a,

y = bk, and z = a2bk. The pumping lemma gives a decomposition y = uvw with |v| > 0 (so v = bl for some

1 ≤ l ≤ k). Pumping out v gives uw = abk−la2bk ∈ L1. But this string cannot be written in the form αβα, and so

is not in L1, a contradiction!

(b) L2 is regular.

Regular Expression: L2 represents the set of all strings over {a, b} of length ≥ 3, that start and end with a.

Therefore, the corresponding regular expression is,

L2 = a(a+ b)+a = a(a+ b)(a+ b)∗a

DFA: The minimum-state DFA description is given as: M2 =
(

{q0, q1, q2, q3, q4}, {a, b}, q0, δ, {q4}
)

where, δ is defined as,

δ(q0, a) = q2

δ(q0, b) = q1

δ(q1, a) = q1

δ(q1, b) = q1

δ(q2, a) = q3

δ(q2, b) = q3

δ(q3, a) = q4

δ(q3, b) = q3

δ(q4, a) = q4

δ(q4, b) = q3

Here, q1 indicates the dead-state which is reached when we receive b as the first symbol of the input string.

— Page 1 of 4 —

Q2. Let Bn (n ≥ 1) denote the binary representation (string with leading zeros omitted) corresponding to any n ∈ N.

For example, you may consider, B5 = 101, B10 = 1010, and B13 = 1101. Let # be another symbol not in {0, 1}.

We denote Brev
n to indicate the reverse of string Bn. For example, Brev

5 = 101, Brev
10 = 0101, and Brev

13 = 1011.

One of the following languages over the alphabet {0, 1,#} is context-free; the other one is not context-free. Identify

which one is what and Justify. No credit will be given only for correct identification (without justification provided).

(a) L3 =
{

Bn#Bn+1

∣

∣ n ≥ 1
}

(b) L4 =
{

Brev
n #Bn+1

∣

∣ n ≥ 1
}

In particular, do the following: (i) For the one which is a context-free language (CFL), give the corresponding

context-free grammar (CFG) as well as the push-down automaton (PDA) both; and (ii) For the one which is not a

CFL, give a proof using the Pumping Lemma for CFL. [Marks: (3 + 3) + 4 = 10]

Solution:

(a) L3 is not a CFL.

For proving this, suppose L3 is a CFL. Let k ∈ N be a pumping lemma constant for L3. Consider the string

w = 1k0k#1k0k−11 which belongs to L3 (here Bm = 1k0k and so Bm+1 = 1k0k−11, where m =
∑2k−1

i=k 2i =
2k(2k − 1) = 4k − 2k). Suppose w = uvxyz, where |vxy| ≤ k and |vy| ≥ 1. If vxy does not contain a #, then

pumping either way will cause a contradiction (increasing or decreasing one of the numbers without touching the

other). If the # is contained in v or y, then pumping either way leads to a string not even in (0+ 1)∗#(0+1)∗, i.e., a

string definitely outside of L3. Because of the |vxy| ≤ k condition, the only remaining possibility is for v = 0j and

y = 1l, j, l ≥ 1, to fall on opposite sides of the “#”. But pumping up in this case means multiplying the left hand

number by some power of two, while it never means multiply the right hand number by some power of two. Thus, the

pumped-up strings will not remain with the right number one more than the left, all cases leading to a contradiction!

(b) L4 is a CFL.

CFG: Note that, if we add 1 to n, then in Bn, all the trailing 1’s are flipped to 0, then the 0 (the rightmost 0 of Bn)

is flipped to 1, and all the other most-significant bits before that 0 remain unchanged.

From this description of binary addition, we can construct the corresponding CFG, G =
(

{S,A,B,C}, {0, 1,#}, P, S
)

,

as follows where the productions rules (P) are:

S → A | B

A → 1#10 | 1A0

B → 1B0 | 0C1

C → 1#1 | 1C1 | 0C0

The production rule for A handles the case that Bn is a string of 1’s. The production rules for B and C handle the

case that Bn contains 0’s and 1’s and has a leading 1.

PDA: The machine will read the binary encoding of n from the input, from least-significant digit to most-significant

digit, at the same time pushing the binary encoding of n + 1 onto its stack. When it encounters the #, it will match

the stack against the remaining input.

The PDA description is given as: M4 =
(

{p0, p1, q}, {0, 1,#}, {0, 1,⊥}, δ, p1, φ
)

where, δ is defined as,

(p1, 0, A) 7→ (p0, 1A)

(p1, 1, A) 7→ (p1, 0A)

(p0, 0, A) 7→ (p0, 0A)

(p0, 1, A) 7→ (p0, 1A)

(p1,#, A) 7→ (q, 1A)

(p0,#, A) 7→ (q, A)

(q, 1, 1) 7→ (q, ǫ)

(q, 0, 0) 7→ (q, ǫ)

(q, ǫ,⊥) 7→ (q, ǫ)

The two states p0, p1 represent a carry value of 0 or 1, respectively; the machine transitions to state q after reading #;

in state q it matches the stack against the remaining input. [acceptance by empty stack]

— Page 2 of 4 —

Q3. Consider the language E = {w ∈ {0, 1}∗ | number of 0’s in w is twice the number of 1’s}.

(a) Design a total single tape Turing machine that accepts this language. Precisely write down the tape alphabet,

the set of states and the transition function.

(b) Write down the sequence of configurations of the Turing machine from part (a) on the input strings 101100 and

010010.

[Marks: 8+(1+1) = 10]

Solution:

(a) Below is the description of one possible Turing machine M that accepts the language E.

Tape alphabet: Γ = {⊢, 0, 1, X, }
States: Q = {s, [q1, ,], [q1, 0,], [q1, 1,], [q1, 0, 0], [q1, 0, 1], [q1, 1, 0], q2, t, r}

Transition function:

State ⊢ 0 1 X

s ([q1, ,],⊢, R) - - - -

[q1, ,] - ([q1, 0,], X,R) ([q1, 1,], X,R) ([q1, ,], X,R) (t,−,−)
[q1, 0,] - ([q1, 0, 0], X,R) ([q1, 0, 1], X,R) ([q1, 0,], X,R) (r,−,−)
[q1, 1,] - ([q1, 1, 0], X,R) ([q1, 1,], 1, R) ([q1, 1,], X,R) (r,−,−)
[q1, 0, 0] - ([q1, 0, 0], 0, R) (q2, X, L) ([q1, 0, 0], X,R) (r,−,−)
[q1, 0, 1] - (q2, X, L) ([q1, 0, 1], 1, R) ([q1, 0, 1], X,R) (r,−,−)
[q1, 1, 0] - (q2, X, L) ([q1, 1, 0], 1, R) ([q1, 1, 0], X,R) (r,−,−)

q2 ([q1, ,],⊢, R) (q2, 0, L) (q2, 1, L) (q2, X, L) -

Once M enters state t or r it stays in that state. The transitions for states t, r are not provided. For all a ∈ Γ, δ(t, a)
could be anything as long as the first component i.e., the destination state is t.

— Page 3 of 4 —

(b) Sequence of configurations of M on input 101100:

(s,⊢ 101100, 0)
1

−→
M

([q1, ,],⊢ 101100, 1)
1

−→
M

([q1, 1,],⊢ X01100, 2)

1

−→
M

([q1, 1, 0],⊢ XX1100, 3)
1

−→
M

([q1, 1, 0],⊢ XX1100, 4)

1

−→
M

([q1, 1, 0],⊢ XX1100, 5)
1

−→
M

(q2,⊢ XX11X0, 4)

1

−→
M

(q2,⊢ XX11X0, 3)
1

−→
M

(q2,⊢ XX11X0, 2)

1

−→
M

(q2,⊢ XX11X0, 1)
1

−→
M

(q2,⊢ XX11X0, 0)

1

−→
M

([q1, ,],⊢ XX11X0, 1)
1

−→
M

([q1, ,],⊢ XX11X0, 2)

1

−→
M

([q1, ,],⊢ XX11X0, 3)
1

−→
M

([q1, 1,],⊢ XXX1X0, 4)

1

−→
M

([q1, 1,],⊢ XXX1X0, 5)
1

−→
M

([q1, 1,],⊢ XXX1X0, 6)

1

−→
M

([q1, 1, 0],⊢ XXX1XX, 7)
1

−→
M

(r,⊢ XXX1XX,−)

Sequence of configurations of M on input 010010:

(s,⊢ 010010, 0)
1

−→
M

([q1, ,],⊢ 010010, 1)
1

−→
M

([q1, 0,],⊢ X10010, 2)

1

−→
M

([q1, 0, 1],⊢ XX0010, 3)
1

−→
M

(q2,⊢ XXX010, 2)

1

−→
M

(q2,⊢ XXX010, 1)
1

−→
M

(q2,⊢ XXX010, 0)

1

−→
M

([q1, ,],⊢ XXX010, 1)
1

−→
M

([q1, ,],⊢ XXX010, 2)

1

−→
M

([q1, ,],⊢ XXX010, 3)
1

−→
M

([q1, ,],⊢ XXX010, 4)

1

−→
M

([q1, 0,],⊢ XXXX10, 5)
1

−→
M

([q1, 0, 1],⊢ XXXXX0, 6)

1

−→
M

(q2,⊢ XXXXXX, 5)
1

−→
M

(q2,⊢ XXXXXX, 4)

1

−→
M

(q2,⊢ XXXXXX, 3)
1

−→
M

(q2,⊢ XXXXXX, 2)

1

−→
M

(q2,⊢ XXXXXX, 1)
1

−→
M

(q2,⊢ XXXXXX, 0)

1

−→
M

([q1, ,],⊢ XXXXXX, 1)
1

−→
M

([q1, ,],⊢ XXXXXX, 2)

1

−→
M

([q1, ,],⊢ XXXXXX, 3)
1

−→
M

([q1, ,],⊢ XXXXXX, 4)

1

−→
M

([q1, ,],⊢ XXXXXX, 5)
1

−→
M

([q1, ,],⊢ XXXXXX, 6)

1

−→
M

([q1, ,],⊢ XXXXXX, 7)
1

−→
M

(t,⊢ XXXXXX,−)

— Page 4 of 4 —

