Indian Institute of Technology Kharagpur Department of Computer Science and Engineering

Foundations of Computing Science (CS60005)

Autumn Semester, 2021-2022

Test - 1 [Marks: 30] Date: 08-Sep-2021 (Wednesday), 8:15am – 9:30am Venue: Online

[Instructions: There are FOUR questions. Answer ALL questions. Be brief and precise.]

- **Q1.** You are about to leave for university classes in the morning and discover you do not have your glasses. You know that the following *six* statements are true:
 - F_1 : If my glasses are on the kitchen table, then I saw them at breakfast.
 - F_2 : I was reading the newspaper in the living room or I was reading the newspaper in the kitchen.
 - F_3 : If I was reading the newspaper in the living room, then my glasses are on the coffee table.
 - F_4 : I did not see my glasses at breakfast.
 - F_5 : If I was reading my book in bed, then my glasses are on the bed table.
 - F_6 : If I was reading the newspaper in the kitchen, then my glasses are on the kitchen table.

You task is to derive the answer to the following question logically – "Where are the glasses?"

Please frame logical arguments to formally deduce (applying logical inferencing) the answer to the above question. Present your solution as indicated in the following parts.

- (a) Write all the propositions (that you have used) with English statements (meaning). (1)
- (b) Build suitable propositional logic formula to encode each of the six statements $F_1 F_6$ given above. (3)
- (c) Use logical inferencing rules (or resolution-refutation principle) to completely derive the answer and conclude where do you find the glasses. (3)
- **Q2.** Consider the following statements.
 - F_1 : Tony and Mike are members of the Alpine club.
 - F_2 : Every member of the Alpine club is either a skier, or a mountain climber, or both.
 - F_3 : No mountain climber likes rain.
 - F_4 : All skier likes snow.
 - F_5 : Mike dislikes whatever Tony likes and likes whatever Tony dislikes.
 - F_6 : Tony likes rain and snow.

Your tasks are to do the following:

- (a) Write all the predicates (that you have used) with English statements (meaning). (1)
- (b) Encode the above *six* statements $F_1 F_6$ in predicate (first-order) logic. (3)
- (c) Use resolution-refutation principle (logical deduction procedure) to prove that,
 - G: "There is a member in the Alpine club who is a mountain climber, but not skier." (4)
- **Q3.** A partial order ρ on a set A is called a total order (or a linear order) if for any two different $a, b \in A$ either $a \rho b$ or $b \rho a$. Which of the following relations ρ , σ , τ on $\mathbb N$ (the set of natural numbers) are partial orders and/or total orders? *Provide proper reasoning / justification*.

[Hint: For each of the relations, ρ , σ , τ on \mathbb{N} , first determine whether the relation is a partial order, and if so, then determine whether it is a total order.]

- (a) $a \rho b$ if and only if $a \le b + 1701$.
- (b) $a \sigma b$ if and only if a divides b, i.e. b = ax, for some $x \in \mathbb{N}$.
- (c) $a \tau b$ if and only if either u < v, or u = v and $x \le y$, where $a = 2^u x$ and $b = 2^v y$ with x and y odd. (3)
- **Q4.** Prove or disprove the following with proper reasoning / justification.
 - (a) Let G be a multiplicative group in which $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$. Then, prove or disprove that G is Abelian. (2)
 - (b) Let R be a ring. Two elements $a, b \in R$ are called associates, denoted $a \sim b$, if a = ub for some unit u of R. Then, prove or disprove that \sim is an equivalence relation on R.
 - (c) Prove or disprove that the set of all finite subsets of \mathbb{N} (the set of natural numbers) is countable. (2)