Indian Institute of Technology Kharagpur Department of Computer Science and Engineering

[Instructions: *There are FOUR questions. Answer ALL questions. Be brief and precise.*]

- Q1. You are about to leave for university classes in the morning and discover you do not have your glasses. You know that the following *six* statements are true:
	- F¹ : *If my glasses are on the kitchen table, then I saw them at breakfast.*
	- F² : *I was reading the newspaper in the living room or I was reading the newspaper in the kitchen.*
	- F³ : *If I was reading the newspaper in the living room, then my glasses are on the coffee table.*
	- F⁴ : *I did not see my glasses at breakfast.*
	- F⁵ : *If I was reading my book in bed, then my glasses are on the bed table.*
	- F⁶ : *If I was reading the newspaper in the kitchen, then my glasses are on the kitchen table.*

You task is to derive the answer to the following question logically – *"Where are the glasses?"*

Please frame logical arguments to formally deduce (applying logical inferencing) the answer to the above question. Present your solution as indicated in the following parts.

- (a) Write all the propositions (that you have used) with English statements (meaning). (1)
- (b) Build suitable propositional logic formula to encode each of the *six* statements $F_1 F_6$ given above. (3)
- (c) Use logical inferencing rules (or resolution-refutation principle) to completely derive the answer and conclude where do you find the glasses. (3) where do you find the glasses.

Solution:

- (a) We may use the following propositions.
	- p : My glasses are on the kitchen table.
	- q : I saw my glasses at breakfast.
	- $r: I$ was reading the newspaper in the living room.
	- s : I was reading the newspaper in the kitchen.
- t : My glasses are on the coffee table.
- $u: I$ was reading my book in bed.
- $v:$ My glasses are on the bed table.
- (b) The proposition logic encodings are as follows.
	- $F_1: p \rightarrow q$ $F_2: r \vee s$ $F_3: r \to t$ $F_4: \neg q$ $F_5: u \to v$ $F_6: s \rightarrow p$
- (c) The logical deduction procedure is given in the following.

Conclusion: *The glasses are on the coffee table.*

Q2. Consider the following statements.

- F¹ : *Tony and Mike are members of the Alpine club.*
- F² : *Every member of the Alpine club is either a skier, or a mountain climber, or both.*
- F³ : *No mountain climber likes rain.*
- F⁴ : *All skier likes snow.*
- F⁵ : *Mike dislikes whatever Tony likes and likes whatever Tony dislikes.*
- F⁶ : *Tony likes rain and snow.*

Your tasks are to do the following:

- (a) Write all the predicates (that you have used) with English statements (meaning). (1)
- (b) Encode the above *six* statements $F_1 F_6$ in predicate (first-order) logic. (3)
- (c) Use resolution-refutation principle (logical deduction procedure) to prove that, G : *"There is a member in the Alpine club who is a mountain climber, but not skier."* (4)

Solution:

(a) We may use the following predicates.

- (b) The predicate (first-order) logic encodings are as follows.
	- $F_1: member(Tony) \wedge member(Mike)$ F_2 : $\forall x \left[member(x) \rightarrow (skier(x) \vee client(x)) \right]$ F_3 : $\forall x \left[\text{climber}(x) \rightarrow \neg \text{like}(x, \text{Rain}) \right]$ F_4 : $\forall x \big[skier(x) \rightarrow likes(x, Snow)\big]$ F_5 : $\forall x \left[(likes(Tony, x) \rightarrow \neg likes(Mike, x)) \right]$ $\wedge(\neg likes(Tony, x) \rightarrow likes(Mike, x))]$ F_6 : likes(Tony, Rain) ∧ likes(Tony, Snow)

(c) The goal statement can be encoded as follows.

 $G: \exists x [member(x) \land climber(x) \land \neg skier(x)] \Rightarrow \neg G: \forall x [\neg member(x) \lor \neg climber(x) \lor skier(x)]$

Now, $(F_1 \wedge F_2 \wedge F_3 \wedge F_4 \wedge F_5 \wedge F_6 \rightarrow G)$ is valid \implies $(F_1 \wedge F_2 \wedge F_3 \wedge F_4 \wedge F_5 \wedge F_6 \wedge \neg G)$ is unsatisfiable.

All the clauses formed from the above formula by eliminating ∀-quantifiers and *implications* are as follows.

The resolution-refutation based deduction procedure is given in the following.

Q3. A partial order ρ on a set A is called a total order (or a linear order) if for any two different $a, b \in A$ either $a \rho b$ or b ρ a. Which of the following relations ρ , σ , τ on N (the set of natural numbers) are partial orders and/or total orders? – *Provide proper reasoning / justification*.

[Hint: For each of the relations, ρ , σ , τ on N, first determine whether the relation is a partial order, and if so, then determine whether it is a total order.]

- (a) $a \rho b$ if and only if $a \leq b + 1701$. (2)
- (b) $a \, \sigma \, b$ if and only if a divides b, i.e. $b = ax$, for some $x \in \mathbb{N}$. (3)

(c) $a \tau b$ if and only if either $u < v$, or $u = v$ and $x \le y$, where $a = 2^u x$ and $b = 2^v y$ with x and y odd. (3)

Solution:

(a) Note that, $1 \rho 2$ and $2 \rho 1$, but $1 \neq 2$, i.e., ρ is not antisymmetric.

Hence, ρ is not a partial order on N. So, obviously it can never be a total order.

(b) We have $a \sigma a$ (obvious as $a \in \mathbb{N}$ divides itself), indicating τ is reflexive.

Let $a \sigma b$ and $b \sigma a$. This implies that $b = ax$ (for some $x \in \mathbb{N}$) and $a = by$ (for some $y \in \mathbb{N}$). This is only possible when $x = y = 1$, implying $a = b$, i.e., σ is antisymmetric.

If a σ b and $b \sigma$ c, we have $b = ax$ and $c = by$ (for some $x, y \in \mathbb{N}$). So, we get, $c = by = (ax)y = az$, where $z = xy \in \mathbb{N}$, implying $a \sigma c$, i.e., σ is transitive too. Therefore, σ is a partial order on \mathbb{N} .

But σ is not a total order on N, since neither (2, 3) nor (3, 2) belongs to σ .

(c) We have $a \tau a$ (obvious), indicating τ is reflexive.

Let $a = 2^u x$ and $b = 2^v y$ (with x, y odd) satisfy $a \tau b$ and $b \tau a$. We cannot have $u < v$ and $v \le u$ simultaneously. So $u = v$. But then $x \le y$ and $y \le x$, implying $x = y$, i.e., $a = b$. So τ is anti-symmetric.

Now suppose $a \tau b$ and $b \tau c$, where $a = 2^u x$, $b = 2^v y$ and $c = 2^w z$ with x, y, z odd. We have $u \le v$ and $v \le w$, i.e., $u \leq w$. If $u < w$, then $a \tau c$. On the other hand, $u = w$ implies $u = v = w$. But then $x \leq y$ and $y \leq z$, so that $x \leq z$, i.e., $a \tau c$. So τ is a partial order on N.

Finally, let $a = 2^u x$ and $b = 2^v y$ be two different integers. We then have either $u \neq v$ or $x \neq y$ (or both). If $u < v$, then $a \tau b$. If $u > v$, then $b \tau a$. If $u = v$, then $a \tau b$ or $b \tau a$ according as whether $x < y$ or $x > y$. Thus, τ is a total order on N.

Q4. Prove or disprove the following *with proper reasoning / justification*.

- (a) Let G be a multiplicative group in which $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$. Then, prove or disprove that G is Abelian. (2)
- (b) Let R be a ring. Two elements $a, b \in R$ are called associates, denoted $a \sim b$, if $a = ub$ for some unit u of R. Then, prove or disprove that \sim is an equivalence relation on R. (3)
- (c) Prove or disprove that the set of all finite subsets of N (the set of natural numbers) is countable. (2)

Solution:

(a) Let $a, b \in G$. By the given property $(a^{-1}b^{-1})^{-1} = (a^{-1})^{-1}(b^{-1})^{-1} = ab$. Moreover, in any group $(a^{-1}b^{-1})^{-1} = (b^{-1})^{-1}(a^{-1})^{-1} = ba$. Thus ab $=$ ba. Therefore, *G* is Abelian. [Proved]

- (b) [**Reflexive**] $a = 1 \times a$ for all $a \in R$.
	- [Symmetric] Let $a = ub$ for some unit u. Let $v \in R$ be the element with $uv = vu = 1$ in R. Then v is also a unit of R, and $b = va$.
	- [Transitive] Let $a = ub$ and $b = vc$ for some units u, v (i.e., $u^{-1}, v^{-1} \in R$). Then $a = (uv)c$. Moreover, $(v^{-1}u^{-1})(uv) = v^{-1}(u^{-1}u)v = v^{-1}v = e$, i.e., uv is also a unit in R.

Therefore, \sim is an equivalence relation on R. [Proved]

(c) Let A denote the set of all finite subsets of N. We write A as the disjoint union $A = \bigcup_{n \in \mathbb{N}_0} A_n$, where A_n comprises subsets of N of size n. $|A_0| = 1$. For $n \ge 1$ the set A_n can be identified with an (infinite) subset of \mathbb{N}^n and so is countable. Since A is the union of countably many finite or countable sets, it is countable. [Proved]