ASSIGNMENT 2

CS60005: Foundations of Computing Science Autumn, 2021 DEADLINE: 8TH NOVEMBER, 23:59 TOTAL MARKS: 20

Solve all problems. Stick to notation used in the classes. Write solutions on white paper, scan and then upload a single pdf file. Make sure that the file size does not exceed 20 MB. Any format other than pdf is not acceptable. Upload in CSE-Moodle course page (suitable entry is already created)

- 1. A *one-counter automaton* is an automaton with a finite set of states Q , a two-way read-only input head and a separate counter that can hold any non-negative integer. The input x is enclosed in endmarkers $\vdash, \neg \notin \Sigma$ and the input head may not go outside the endmarkers. The machine starts in its start state s with its counter set to 0 and with its input head pointing to \vdash . In each step, it can test its counter for 0. Based on this information, its current state and the symbol its input head is currently reading, it can either add 1, −1 to its counter and move its input head either left or right and enter a new state. It accepts by entering a distinguished final state t.
	- (a) Give a rigorous formal definition of these machines, including a definition of acceptance. Your definition should begin as follows: "A one-counter automaton is a 7-tuple $\mathcal{M} = (Q, \Sigma, \vdash, \dashv, s, t, \delta)$, where \dots ".

Solution: A one-counter automaton is a 7-tuple $\mathcal{M} = (Q, \Sigma, \vdash, \dashv, s, t, \delta)$, where

- Q is a finite set of states
- Σ is the input alphabet
- \vdash , \dashv are left and right endmarkers
- s is the start state
- \bullet t is the accept state
- $\delta: Q \times \Gamma \times \{Z, NZ\} \to Q \times \{L, R\} \times \{1, -1\}$ is the transition function with Z, NZ denoting the counter being zero, non-zero respecively. Here $\Gamma = \Sigma \cup \{\vdash, \dashv\}.$

The following restrictions apply:

- $\forall p \in Q \ \forall A \in \{Z, NZ\}, \exists q \in Q \ c \in \{1, -1\} \text{ such that } \delta(p, \vdash, A) = (q, R, c)$
- $\forall p \in Q \land A \in \{Z, NZ\}, \exists q \in Q \cup \{1, -1\} \text{ such that } \delta(p, \dashv, A) = (q, L, c)$
- $\forall p \in Q \setminus t \ a \in \Gamma, \exists q \in Q \ Y \in \{L, R\} \text{ such that } \delta(p, a, Z) = (q, Y, 1)$
- $\forall a \in \Gamma \ A \in \{Z, NZ\}, \exists Y \in \{L, R\} \ c \in \{1, -1\} \text{ such that } \delta(t, a, A) = (t, Y, c)$

Define a configuration of M to be a string in $Q \times \Sigma^* \times \mathbb{N} \times \mathbb{N}$ containing the current state, contents of the tape, position of the tape head and value of the counter. The start configuration on input x is $(s, \vdash x \dashv, 0, 0)$. Further, define for $m \neq 0$

$$
(p, z, n, m) \xrightarrow[\t{M}]{\iota} \left\{ \begin{array}{l} (q, z, n+1, m-1) \text{ if } \delta(p, z_n, NZ) = (q, R, -1) \\ (q, z, n+1, m+1) \text{ if } \delta(p, z_n, NZ) = (q, R, 1) \\ (q, z, n-1, m-1) \text{ if } \delta(p, z_n, NZ) = (q, L, -1) \\ (q, z, n-1, m+1) \text{ if } \delta(p, z_n, NZ) = (q, L, 1) \end{array} \right.
$$

and

$$
(p, z, n, 0) \xrightarrow[\mathcal{M}]{-1} \left\{ \begin{array}{l} (q, z, n+1, 1) \text{ if } \delta(p, z_n, Z) = (q, R, 1) \\ (q, z, n-1, 1) \text{ if } \delta(p, z_n, Z) = (q, L, 1) \end{array} \right.
$$

The machine M is said to accept a string x if $(s, \vdash x \dashv, 0, 0) \xrightarrow{\ast} (t, \vdash x \dashv, m, n)$ for some $m, n \in \mathbb{N}$.

Note that the input tape is read-only. A configuration for a fixed input may be defined without the second component as well.

(b) Prove that the membership problem (given \mathcal{M}, x , does $\mathcal M$ accept x?) for deterministic one-counter automata is decidable. 2

Solution: At any point of time, M can be in one of $|Q|$ possible states and its tape head can be in one of $|x| + 2$ possible positions. The machine loops on a given input whenever the first three components of a configuration (p, z, n, m) repeats with a counter value $\geq m$. So, for a halting sequence of configurations, the counter value can never exceed $t = |Q| \times (|x| + 2)$. For otherwise, at least one combination of state and tape-head position must repeat as the counter is incremented each step of the computation thus making the machine loop. This immediately gives us a decision procedure for testing if M accepts x - simulate M on x for t^2 steps; if the first three components of any configuration repeats with an increased value of counter, then the machine loops; otherwise, if M halts, check whether it enters the accept or reject state and accordingly determine if M accepts x .

- 2. Describe a language over alphabet {0} for each of the following classes and justify.
	- (a) Regular Solution:

$$
\{0^n \mid n \bmod 2 \equiv 0\}
$$

Regular expression for the language: $(00)^*$.

(b) Recursive but not context-free

Solution:

$$
\{0^{n^2} \mid n \in \mathbb{N}\}
$$

Possible to design a total TM recognising the language. Hence recursive.

Suppose that L is context free. Then by pumping lemma, there exists a constant k such that for every string $s \in L$ of length $\geq k$, we can write $s = uvwxy$ s.t., $|vx| \geq 1$, $|vwx| \leq k$ and $uv^iwx^iy \in L$ for all $n \geq 0$. Consider the language $\mathsf{SQ} = \{0^{n^2} \mid n \in \mathbb{N}\}\$ and suppose that it is context-free. Pumping lemma guarantees existence of a constant k s.t., $s = 0^{k^2}$ can be written as $s = uvwxy$ with $|vx| = \ell$ and $0 < \ell \leq k$. The string uv^2wx^2y must be in SQ. But $|uv^2wx^2y| = k^2 + \ell \leq k^2 + k$. But SQ does not contain any string of length between k^2 and $(k+1)^2$ whereas $k^2 < k^2 + k < (k+1)^2$. This contradicts out assumption that SQ is context-free.

(c) Recursively enumberable but not recursive

Solution: For an alphabet Σ , Σ^* is countable and hence there exists a 1-1 map $\tau : \Sigma^* \to \mathbb{N}$. Consider an enumeration of all Turing machines encoded as strings over Σ. Every TM \mathcal{M}_x in the list (where $x \in Σ^*$) can be encoded by an integer given by $\tau(x)$. Note that $\tau(x)$ also encodes the string x. Now, consider the halting problem. Every instance (\mathcal{N}, x) of HP can be encoded using two integers. We can encode the every $a \in \mathbb{N}$ using the unary alphabet $\{0\}$ as 0^a . Putting it all together, we have $HP = \{ (0^{\tau(y)}, 0^{\tau(x)}) \mid \mathcal{M}_y \text{ halts on input } x \}, \text{ which is } r.e. \text{ but not recursive.}$

$$
5 = (1+2+2)
$$

3. Let L be the set of Turing machines M with input alphabet Σ such that M writes the symbol $a \in \Sigma$ at some point on its tape. Show that L is undecidable. $|3|$

Solution: We show that L is undecidable via a reduction from HP. Let (\mathcal{N}, x) be an instance of HP with Γ being the tape alphabet of N. Let M be Turing machine defined as follows: tape alphabet consists of encodings of Γ with $\Sigma \setminus \{a\}$. (Additional delimiter symbols may also be included.) M erases its own input and simulates N on input x (here, x is also encoded with symbols from $\Sigma \setminus \{a\}$. If N halts on x, M enters a new state q; while in q, M writes a on the tape and then halts. If N halts on x, then M writes a on its tape. Otherwise M never writes a on its tape.

4. Suppose that $P \neq NP$. Prove that it is undecidable, given $L \in NP$, whether or not $L \in \mathbf{P}$. $\vert 3 \vert$

Solution: Let Q be a property on r.e. sets defined as follows: conditioned on $L \in NP$, $Q(L) = \top$ if $L \in \mathbf{P}$ and and $Q(L) = \bot$ otherwise. Assuming that $\mathbf{P} \neq \mathbf{NP}$, no NP-complete language can be in **P**. So $Q(L) = T$ for any $L \in \mathbf{P}$ and $Q(L) = \bot$ for any language $L \in \mathbf{NP}$ -Complete. Hence Q is a non-trivial property and by Rice's theorem Q is undecidable.

- 5. A language L is in class DP (where D stands for difference) iff there are languages $L_1 \in \mathbf{NP}$ and $L_2 \in \mathbf{coNP}$ so that $L = L_1 \cap L_2$.
	- (a) Define completeness for the class \bf{DP} under polynomial time reductions. $\qquad \qquad \qquad$ 0.5 **Solution:** A language L is **DP**-Complete if $L \in \textbf{DP}$ and for all $A \in \textbf{DP}$, $A \leq p L$.
	- (b) The problem SAT-UNSAT is defined as the set of all pairs of Boolean formulae $\langle \phi, \psi \rangle$ such that ϕ is satisfiable and ψ is unsatisfiable. Show that SAT-UNSAT is DP -complete. 2.5

Solution: Define $L_1 \in \mathbf{NP}, L_2 \in \mathbf{coNP}$ as follows.

 $L_1 = {\langle \phi, \psi \rangle | \phi \in \mathsf{SAT} \text{ and } \psi \text{ is any Boolean formula}}$

 $L_2 = \{\langle \phi, \psi \rangle | \phi \text{ is any Boolean formula and } \psi \in \mathsf{UNSAT} \}$

Clearly SAT-UNSAT = $L_1 \cap L_2$ and hence SAT-UNSAT \in DP.

We know that L_1 is NP-Complete and L_2 is **coNP**-complete. Let $A \in \textbf{DP}$. Then $A = A_1 \cap A_2$ where $A_1 \in \mathbf{NP}$ and $A_2 \in \mathbf{coNP}$. We have $A_1 \leq_p L_1$ and $A_2 \leq_p L_2$. Let f_1, f_2 be the corresponding reduction functions. For $x \in A_1 \cap A_2$, let $f_1(x) = \langle \phi_1, \psi_1 \rangle$ and $f_2(x) = \langle \phi_2, \psi_2 \rangle$. Then $\langle \phi_1(x), \psi_2(x) \rangle$ is in SAT-UNSAT. Furthermore,

$$
\langle \phi_1(x), \psi_2(x) \rangle \in \text{SAT-UNSAT} \iff \phi_1 \in \text{SAT} \text{ and } \psi_2 \in \text{UNSAT}
$$

$$
\iff f_1(x) \in L_1 \text{ and } f_2(x) \in L_2
$$

$$
\iff x \in A_1 \text{ and } x \in A_2
$$

$$
\iff x \in A_1 \cap A_2 = A
$$

Hence $A \leq_p$ SAT-UNSAT for any $A \in \mathbf{DP}$ and SAT-UNSAT is $\mathbf{DP}\text{-}Complete$.

(c) A (undirected) graph G is $Hamiltonian$ if it contains a Hamiltonian cycle (a cycle visiting every vertex exactly once). The language HC-CRITICAL consists of all graphs G such that G is not Hamiltonian but adding any edge to G will make it Hamiltonian. Show that HC-CRITICAL is in DP . $|2|$

Solution: Let HC be the set of all Hamiltonian graphs. A certificate for a graph to be Hamiltonian would consist of the sequence of vertices in the Hamiltonian cycle. Clearly the certificate is verifiable in deterministic polynomial time and hence $HC \in NP$. Let

 $L_1 = \{G \mid \text{adding any edge to } G \text{ makes it Hamiltonian}\}\$

We have $L_2 = \neg \textsf{HC}$ and hence $L_2 \in \textbf{coNP}$. Now, consider L_1 and a "yes" instance $G = (V, E)$ of L_1 . A certificate for G would contain for each edge $e \in E$, a sequence of vertices of length |V| forming a Hamiltonian cycle in $G_e = (V, E \cup \{e\})$. Since there are at most $|V|^2$ possible edges, the length of the certificate is polynomial in the size of the instance. Also, the certificate can be verified deterministically in polynomial time. Hence $L_1 \in \mathbf{NP}$.

We have HC-CRITICAL = $L_1 \cap L_2$ where $L_1 \in \mathbf{NP}$ and $L_2 \in \mathbf{coNP}$; therefore HC-CRITICAL ∈ DP.