
Assignment 2

CS60005: Foundations of Computing Science Autumn, 2021
Deadline: 8th November, 23:59 Total Marks: 20

Solve all problems. Stick to notation used in the classes.
Write solutions on white paper, scan and then upload a single pdf file. Make sure that the

file size does not exceed 20 MB. Any format other than pdf is not acceptable.
Upload in CSE-Moodle course page (suitable entry is already created)

1. A one-counter automaton is an automaton with a finite set of states Q, a two-way
read-only input head and a separate counter that can hold any non-negative integer.
The input x is enclosed in endmarkers `,a /∈ Σ and the input head may not go outside
the endmarkers. The machine starts in its start state s with its counter set to 0 and
with its input head pointing to `. In each step, it can test its counter for 0. Based on
this information, its current state and the symbol its input head is currently reading,
it can either add 1,−1 to its counter and move its input head either left or right and
enter a new state. It accepts by entering a distinguished final state t.

(a) Give a rigorous formal definition of these machines, including a definition of
acceptance. Your definition should begin as follows: “A one-counter automaton
is a 7-tuple M = (Q,Σ,`,a, s, t, δ), where . . . ”. 2

Solution: A one-counter automaton is a 7-tuple M = (Q,Σ,`,a, s, t, δ), where

• Q is a finite set of states

• Σ is the input alphabet

• `, a are left and right endmarkers

• s is the start state

• t is the accept state

• δ : Q×Γ×{Z,NZ} → Q×{L,R}× {1,−1} is the transition function with Z,NZ
denoting the counter being zero, non-zero respecively. Here Γ = Σ ∪ {`,a}.

The following restrictions apply:

• ∀p ∈ Q ∀A ∈ {Z,NZ},∃q ∈ Q c ∈ {1,−1} such that δ(p,`, A) = (q,R, c)

• ∀p ∈ QA ∈ {Z,NZ},∃q ∈ Q c ∈ {1,−1} such that δ(p,a, A) = (q, L, c)

• ∀p ∈ Q \ t a ∈ Γ,∃q ∈ Q Y ∈ {L,R} such that δ(p, a, Z) = (q, Y, 1)

• ∀a ∈ ΓA ∈ {Z,NZ},∃Y ∈ {L,R} c ∈ {1,−1} such that δ(t, a, A) = (t, Y, c)

Define a configuration of M to be a string in Q × Σ∗ × N × N containing the current
state, contents of the tape, position of the tape head and value of the counter. The start
configuration on input x is (s,` x a, 0, 0). Further, define for m 6= 0

(p, z, n,m)
1−→
M


(q, z, n+ 1,m− 1) if δ(p, zn, NZ) = (q,R,−1)
(q, z, n+ 1,m+ 1) if δ(p, zn, NZ) = (q,R, 1)
(q, z, n− 1,m− 1) if δ(p, zn, NZ) = (q, L,−1)
(q, z, n− 1,m+ 1) if δ(p, zn, NZ) = (q, L, 1)

and

(p, z, n, 0)
1−→
M

{
(q, z, n+ 1, 1) if δ(p, zn, Z) = (q,R, 1)
(q, z, n− 1, 1) if δ(p, zn, Z) = (q, L, 1)

The machine M is said to accept a string x if (s,` x a, 0, 0)
∗−→
M

(t,` x a,m, n) for some

m,n ∈ N.

Note that the input tape is read-only. A configuration for a fixed input may be defined
without the second component as well.

(b) Prove that the membership problem (given M, x, does M accept x?) for
deterministic one-counter automata is decidable. 2

Solution: At any point of time,M can be in one of |Q| possible states and its tape head
can be in one of |x|+ 2 possible positions. The machine loops on a given input whenever
the first three components of a configuration (p, z, n,m) repeats with a counter value
≥ m. So, for a halting sequence of configurations, the counter value can never exceed
t = |Q|× (|x|+2). For otherwise, atleast one combination of state and tape-head position
must repeat as the counter is incremented each step of the computation thus making the
machine loop. This immediately gives us a decision procedure for testing if M accepts x
– simulateM on x for t2 steps; if the first three components of any configuration repeats
with an increased value of counter, then the machine loops; otherwise, if M halts, check
whether it enters the accept or reject state and accordingly determine if M accepts x.

2. Describe a language over alphabet {0} for each of the following classes and justify.

(a) Regular

Solution:
{0n | n mod 2 ≡ 0}

Regular expression for the language: (00)∗.

(b) Recursive but not context-free

Solution:
{0n

2

| n ∈ N}

Possible to design a total TM recognising the language. Hence recursive.

Suppose that L is context free. Then by pumping lemma, there exists a constant k such
that for every string s ∈ L of length ≥ k, we can write s = uvwxy s.t., |vx| ≥ 1, |vwx| ≤ k
and uviwxiy ∈ L for all n ≥ 0. Consider the language SQ = {0n2 | n ∈ N} and suppose

that it is context-free. Pumping lemma guarantees existence of a constant k s.t., s = 0k
2

can be written as s = uvwxy with |vx| = ` and 0 < ` ≤ k. The string uv2wx2y must be
in SQ. But |uv2wx2y| = k2 + ` ≤ k2 + k. But SQ does not contain any string of length
between k2 and (k+ 1)2 whereas k2 < k2 +k < (k+ 1)2. This contradicts out assumption
that SQ is context-free.

(c) Recursively enumberable but not recursive

Solution: For an alphabet Σ, Σ∗ is countable and hence there exists a 1-1 map
τ : Σ∗ → N. Consider an enumeration of all Turing machines encoded as strings over
Σ. Every TM Mx in the list (where x ∈ Σ∗) can be encoded by an integer given by
τ(x). Note that τ(x) also encodes the string x. Now, consider the halting problem.
Every instance (N , x) of HP can be encoded using two integers. We can encode the
every a ∈ N using the unary alphabet {0} as 0a. Putting it all together, we have
HP = {(0τ(y), 0τ(x)) | My halts on input x}, which is r.e. but not recursive.

5 = (1+2+2)

3. Let L be the set of Turing machinesM with input alphabet Σ such thatM writes the
symbol a ∈ Σ at some point on its tape. Show that L is undecidable. 3

Page 2

Solution: We show that L is undecidable via a reduction from HP. Let (N , x) be an instance
of HP with Γ being the tape alphabet of N . LetM be Turing machine defined as follows: tape
alphabet consists of encodings of Γ with Σ \ {a}. (Additional delimiter symbols may also be
included.) M erases its own input and simulates N on input x (here, x is also encoded with
symbols from Σ \ {a}). If N halts on x,M enters a new state q; while in q,M writes a on the
tape and then halts. If N halts on x, then M writes a on its tape. Otherwise M never writes
a on its tape.

4. Suppose that P 6= NP. Prove that it is undecidable, given L ∈ NP, whether or not
L ∈ P. 3

Solution: Let Q be a property on r.e. sets defined as follows: conditioned on L ∈ NP,
Q(L) = > if L ∈ P and and Q(L) = ⊥ otherwise. Assuming that P 6= NP, no NP-complete
language can be in P. So Q(L) = > for any L ∈ P and Q(L) = ⊥ for any language L ∈ NP-
Complete. Hence Q is a non-trivial property and by Rice’s theorem Q is undecidable.

5. A language L is in class DP (where D stands for difference) iff there are languages
L1 ∈ NP and L2 ∈ coNP so that L = L1 ∩ L2.

(a) Define completeness for the class DP under polynomial time reductions. 0.5

Solution: A language L is DP-Complete if L ∈ DP and for all A ∈ DP, A ≤p L.

(b) The problem SAT-UNSAT is defined as the set of all pairs of Boolean formulae
〈φ, ψ〉 such that φ is satisfiable and ψ is unsatisfiable. Show that SAT-UNSAT is
DP-complete. 2.5

Solution: Define L1 ∈ NP, L2 ∈ coNP as follows.

L1 = {〈φ, ψ〉 | φ ∈ SAT and ψ is any Boolean formula}

L2 = {〈φ, ψ〉 | φ is any Boolean formula and ψ ∈ UNSAT}

Clearly SAT-UNSAT = L1 ∩ L2 and hence SAT-UNSAT ∈ DP.

We know that L1 is NP-Complete and L2 is coNP-complete. Let A ∈ DP. Then
A = A1 ∩ A2 where A1 ∈ NP and A2 ∈ coNP. We have A1 ≤p L1 and A2 ≤p L2. Let
f1, f2 be the corresponding reduction functions. For x ∈ A1 ∩ A2, let f1(x) = 〈φ1, ψ1〉
and f2(x) = 〈φ2, ψ2〉. Then 〈φ1(x), ψ2(x)〉 is in SAT-UNSAT. Furthermore,

〈φ1(x), ψ2(x)〉 ∈ SAT-UNSAT ⇐⇒ φ1 ∈ SAT and ψ2 ∈ UNSAT

⇐⇒ f1(x) ∈ L1 and f2(x) ∈ L2

⇐⇒ x ∈ A1 and x ∈ A2

⇐⇒ x ∈ A1 ∩A2 = A

Hence A ≤p SAT-UNSAT for any A ∈ DP and SAT-UNSAT is DP-Complete.

(c) A (undirected) graph G is Hamiltonian if it contains a Hamiltonian cycle (a cycle
visiting every vertex exactly once). The language HC-CRITICAL consists of all
graphs G such that G is not Hamiltonian but adding any edge to G will make it
Hamiltonian. Show that HC-CRITICAL is in DP. 2

Solution: Let HC be the set of all Hamiltonian graphs. A certificate for a graph to be
Hamiltonian would consist of the sequence of vertices in the Hamiltonian cycle. Clearly
the certificate is verifiable in deterministic polynomial time and hence HC ∈ NP.

Let
L1 = {G | adding any edge to G makes it Hamiltonian}

Page 3

and
L2 = {G |G is not Hamiltonian}.

We have L2 = ¬HC and hence L2 ∈ coNP. Now, consider L1 and a “yes” instance
G = (V,E) of L1. A certificate for G would contain for each edge e ∈ E, a sequence of
vertices of length |V | forming a Hamiltonian cycle in Ge = (V,E ∪ {e}). Since there are
at most |V |2 possible edges, the length of the certificate is polynomial in the size of the
instance. Also, the certificate can be verified deterministically in polynomial time. Hence
L1 ∈ NP.

We have HC-CRITICAL = L1 ∩ L2 where L1 ∈ NP and L2 ∈ coNP; therefore
HC-CRITICAL ∈ DP.

Page 4

