ASSIGNMENT 2

CS60005: FOUNDATIONS OF COMPUTING SCIENCE AuTumN, 2021
DEADLINE: 8TH NOVEMBER, 23:59 ToraL MARKS: 20

Solve all problems. Stick to notation used in the classes.
Write solutions on white paper, scan and then upload a single pdf file. Make sure that the
file size does not exceed 20 MB. Any format other than pdf is not acceptable.
Upload in CSE-Moodle course page (suitable entry is already created)

1. A one-counter automaton is an automaton with a finite set of states (), a two-way
read-only input head and a separate counter that can hold any non-negative integer.
The input z is enclosed in endmarkers -, 4 ¢ ¥ and the input head may not go outside
the endmarkers. The machine starts in its start state s with its counter set to 0 and
with its input head pointing to . In each step, it can test its counter for 0. Based on
this information, its current state and the symbol its input head is currently reading,
it can either add 1, —1 to its counter and move its input head either left or right and
enter a new state. It accepts by entering a distinguished final state ¢.

(a) Give a rigorous formal definition of these machines, including a definition of
acceptance. Your definition should begin as follows: “A one-counter automaton
is a 7-tuple M = (Q, %, F,,s,t,0), where ...”.
Solution: A one-counter automaton is a 7-tuple M = (@, %, +, -, s,t,0), where
e () is a finite set of states
e Y is the input alphabet

e are left and right endmarkers

s is the start state

t is the accept state

0:QxI'x{Z,NZ} - Q x{L,R} x {1,—1} is the transition function with Z, NZ
denoting the counter being zero, non-zero respecively. Here I' = ¥ U {F, 4}.

The following restrictions apply:

Vpe QVAe{Z,NZ},3q € Q c € {1,—1} such that é(p,-, A) = (¢, R, ¢)
VpeQQAe{Z,NZ},3q € Qce{l,—1} such that §(p, -, A) = (¢, L, ¢)
VpeQ\tael',3ge QY € {L, R} such that §(p,a,Z) = (q,Y,1)

e VacTAc{Z NZ},3Y € {L,R} c € {1,—1} such that (¢,a,A) = (¢,Y,¢)

Define a configuration of M to be a string in @ x ¥* x N x N containing the current
state, contents of the tape, position of the tape head and value of the counter. The start
configuration on input z is (s, 2 -,0,0). Further, define for m # 0

(¢,z,n+1,m—1)if §(p,zn, NZ) = (¢, R,—1)
1
(¢,z,n+1,m+1)if §(p,zn, NZ) = (q, R, 1)
(p, 2,m,m) — (q,2,n — 1,m — 1) if 8(p, 2, NZ) = (¢, L, —1)
(¢,z,n—1,m~+1)if §(p,zn, NZ) = (¢, L, 1)

. ()it 6(p. 20, 2) = (
1 (I7Zan/+171 i 6]),2»,“2 = qaRa
(p, 2,7,0) o { (¢,z,n—1,1)if 6(p,2n,Z) = (¢, L

The machine M is said to accept a string x if (s, 2 +,0,0) — (¢, 2 -, m,n) for some
M
m,n € N.

Note that the input tape is read-only. A configuration for a fixed input may be defined
without the second component as well.

Prove that the membership problem (given M,z, does M accept z7) for
deterministic one-counter automata is decidable.

Solution: At any point of time, M can be in one of |Q| possible states and its tape head
can be in one of |x| 4+ 2 possible positions. The machine loops on a given input whenever
the first three components of a configuration (p,z,n,m) repeats with a counter value
> m. So, for a halting sequence of configurations, the counter value can never exceed
t = |Q| x (Jz|+2). For otherwise, atleast one combination of state and tape-head position
must repeat as the counter is incremented each step of the computation thus making the
machine loop. This immediately gives us a decision procedure for testing if M accepts x
— simulate M on x for t? steps; if the first three components of any configuration repeats
with an increased value of counter, then the machine loops; otherwise, if M halts, check
whether it enters the accept or reject state and accordingly determine if M accepts x.

2. Describe a language over alphabet {0} for each of the following classes and justify.

(a)

Regular

Solution:
{0" | n mod 2 = 0}

Regular expression for the language: (00)*.

Recursive but not context-free

Solution: ,
{0™ |n e N}

Possible to design a total TM recognising the language. Hence recursive.

Suppose that L is context free. Then by pumping lemma, there exists a constant k such
that for every string s € L of length > k, we can write s = uvwzy s.t., [vz| > 1, jvwz| < k
and wv'wz’y € L for all n > 0. Consider the language SQ = {O"2 | n € N} and suppose
that it is context-free. Pumping lemma guarantees existence of a constant k s.t., s = 0r*
can be written as s = uwvwzy with |vx| = £ and 0 < ¢ < k. The string uv?wz?y must be
in SQ. But |uvwa?y| = k? + ¢ < k? + k. But SQ does not contain any string of length
between k? and (k+1)? whereas k? < k? +k < (k+1)2. This contradicts out assumption
that SQ is context-free.

Recursively enumberable but not recursive

Solution: For an alphabet ¥, ¥* is countable and hence there exists a 1-1 map
7 : 3% — N. Consider an enumeration of all Turing machines encoded as strings over
Y. Every TM M, in the list (where € ¥*) can be encoded by an integer given by
7(z). Note that 7(z) also encodes the string x. Now, consider the halting problem.
Every instance (N, z) of HP can be encoded using two integers. We can encode the
every a € N using the unary alphabet {0} as 0%. Putting it all together, we have
HP = {(07®),07(*)) | M,, halts on input z}, which is r.e. but not recursive.

5= (142+2)

3. Let L be the set of Turing machines M with input alphabet 3 such that M writes the
symbol a € ¥ at some point on its tape. Show that L is undecidable.

Page 2

Solution: We show that L is undecidable via a reduction from HP. Let (N, z) be an instance
of HP with T" being the tape alphabet of A/. Let M be Turing machine defined as follows: tape
alphabet consists of encodings of ' with ¥ \ {a}. (Additional delimiter symbols may also be
included.) M erases its own input and simulates N on input x (here, x is also encoded with
symbols from X\ {a}). If A halts on 2z, M enters a new state ¢; while in ¢, M writes a on the
tape and then halts. If N halts on z, then M writes a on its tape. Otherwise M never writes
a on its tape.

. Suppose that P = NP. Prove that it is undecidable, given L. € NP, whether or not
LeP.

Solution: Let @ be a property on r.e. sets defined as follows: conditioned on L € NP,
Q(L)=Tif L € P and and Q(L) = L otherwise. Assuming that P # NP, no NP-complete
language can be in P. So Q(L) = T for any L € P and Q(L) = L for any language L € NP-
Complete. Hence @) is a non-trivial property and by Rice’s theorem @ is undecidable.

. A language L is in class DP (where D stands for difference) iff there are languages
L1 € NP and Ly € coNP so that L = L1 N Ls.

(a) Define completeness for the class DP under polynomial time reductions.
Solution: A language L is DP-Complete if L € DP and for all A € DP, A <, L.

(b) The problem SAT-UNSAT is defined as the set of all pairs of Boolean formulae
(¢, 1) such that ¢ is satisfiable and v is unsatisfiable. Show that SAT-UNSAT is
DP-complete.

Solution: Define L; € NP, Ly € coNP as follows.

Ly = {{¢,v) | ¢ € SAT and ¢ is any Boolean formula}

Ly = {{(¢,v) | ¢ is any Boolean formula and ¢ € UNSAT}

Clearly SAT-UNSAT = L; N Ly and hence SAT-UNSAT € DP.

We know that L; is NP-Complete and Lo is coNP-complete. Let A € DP. Then
A=A N Ay where Ay € NP and Ay € coNP. We have A; <, L; and Ay <, Ly. Let
f1, f2 be the corresponding reduction functions. For = € Ay N Ay, let f1(z) = (¢1,11)
and fa(z) = (P2, 12). Then (¢1(x),P2(x)) is in SAT-UNSAT. Furthermore,

(¢1(x), 2 (x)) € SAT-UNSAT <= ¢ € SAT and 1p5 € UNSAT
<= fi(z) € Ly and fo(z) € Ly
< re€ A and z € Ay
— re€A NAy=A

Hence A <, SAT-UNSAT for any A € DP and SAT-UNSAT is DP-Complete.

(¢) A (undirected) graph G is Hamiltonian if it contains a Hamiltonian cycle (a cycle
visiting every vertex exactly once). The language HC-CRITICAL consists of all
graphs G such that G is not Hamiltonian but adding any edge to G will make it
Hamiltonian. Show that HC-CRITICAL is in DP.

Solution: Let HC be the set of all Hamiltonian graphs. A certificate for a graph to be

Hamiltonian would consist of the sequence of vertices in the Hamiltonian cycle. Clearly
the certificate is verifiable in deterministic polynomial time and hence HC € NP.

Let
L, = {G | adding any edge to G makes it Hamiltonian}

Page 3

and
L, = {G | G is not Hamiltonian}.

We have Ly = —HC and hence Ly € coNP. Now, consider L; and a “yes” instance
G = (V,E) of Ly. A certificate for G would contain for each edge e € FE, a sequence of
vertices of length |V| forming a Hamiltonian cycle in G, = (V, E U {e}). Since there are
at most |V |? possible edges, the length of the certificate is polynomial in the size of the
instance. Also, the certificate can be verified deterministically in polynomial time. Hence
L, € NP.

We have HC-CRITICAL = Ly N Ly where Ly € NP and Ly € coNP; therefore
HC-CRITICAL € DP.

Page 4

