

TUTORIAL - 1A

(FINITE AUTOMATA & REGULAR LANGUAGES)

Problem-1

Let A, B be languages over an alphabet Σ , and $C = A - B$.

Which of the following statements must be true?

- a) If A and B are regular, then C is regular.
- b) If A and C are regular, then B is regular.
- c) If B and C are regular, then A is regular.
- d) If C is regular, then A and B are regular.

Problem-2

Consider the following language over the alphabet $\{a,b\}$:

$L_1 = \{ x \in \{a,b\}^* \mid x \text{ starts with } ab \text{ but does not end with } ab \}.$

- a) Write a regular expression for L_1 .
- b) Design a DFA for L_1 .

Problem-3

The language, $L_2 = \{ uvv^R w \mid u, v, w \in \{a, b\}^+ \}$ is regular.

Here, v^R is the reverse of v .

Answer the following:

- a) Design a regular expression whose language is L_2 .
- b) Convert the regular expression of Part (a) to an equivalent NFA.
- c) Convert the NFA in Part (b) to an equivalent DFA.

Problem-4

Construct a regular expression over the alphabet $\{a,b,c\}$ for:

$L_3 = \{ x \in \{a,b,c\}^* \mid x \text{ has } 4n+1 \text{ b's for some integer } n \geq 0 \}.$

Then, do the following:

- Construct an NFA from it.**
- Then, build the equivalent DFA.**

Problem-5

Design a DFA for the following language:

$L_4 = \{ x \in \{a, b\}^* \mid \#a(x) \equiv 1 \pmod{2} \text{ and } \#b(x) \equiv 2 \pmod{3} \}.$

where, $\#a(x)$ and $\#b(x)$ denote the number of a's & b's in x .

What changes do you make in the automaton if the language is changed as follows:

$L'_4 = \{ x \in \{a, b\}^* \mid \#a(x) \equiv 0 \pmod{2} \text{ and } \#b(x) \equiv 0 \pmod{3} \}.$

Problem-6

Consider the language,

$L_5 = \{ x \in \{a, b\}^* \mid x \text{ ends with 3 consecutive b's} \}.$

Answer the following.

- (a) Design a ϵ -NFA and then an equivalent NFA for L_5 .
- (b) Using subset construction, construct an equivalent DFA for the NFA from Part-(a).

Problem-7

Two regular expressions over the same alphabet are called equivalent if they generate the same language.

Prove/Disprove the equivalence of the following pairs of regular expressions over the alphabet $\{a,b\}$.

- i) $(ab+a)^*a$ and $a(ba+a)^*$
- ii) $(ab^*a+ba^*b)^*$ and $(ab^*a)^*+(ba^*b)^*$

THANK YOU !