

Roll: _____ Name: _____

[Write your answers in question paper. Answer all questions. Be brief and precise.]**Q1. [Languages – Strings and Operations]**

Let us define languages L_1, L_2, L_3 as sets of strings over the singleton alphabet $\Sigma = \{c\}$. Present examples (with proper justifications) satisfying the conditions as specified below.

(a) Give an example of a language $L_1 \subseteq \Sigma^*$ such that $L_1^* = L_1^+$. (2)

Solution:

Let $L_1 = \{\epsilon, c\}$.

Then, $L_1^* = \{\epsilon, c, cc, ccc, \dots\} = \{c^n \mid n \geq 0\}$ and $L_1^+ = \{\epsilon, c, cc, ccc, \dots\} = \{c^n \mid n \geq 0\}$.

Hence, $L_1^* = L_1^+$.

(b) Give an example of a language $L_2 \subseteq \Sigma^*$ such that $L_2 = L_2^*$. (2)

Solution:

Let $L_2 = \{\epsilon, c, cc, ccc, \dots\} = \{c^n \mid n \geq 0\}$.

Then, $L_2^* = \{\epsilon, c, cc, ccc, \dots\} = \{c^n \mid n \geq 0\}$.

Hence, $L_2 = L_2^*$.

(c) Give an example of a language $L_3 \subseteq \Sigma^*$ such that L_3^* is finite. (2)

Solution:

Let $L_3 = \{\epsilon\}$.

Then, $L_3^* = \{\epsilon\}$.

Hence, L_3^* is finite.

Q2. [NFA and DFA – Construction and Properties]

Consider the following language over $\{a, b\}$ and answer the questions asked below.

$$L_y = \{ y \mid y \in \{a, b\}^* \text{ and } y \text{ does not start and end with the same symbol} \}$$

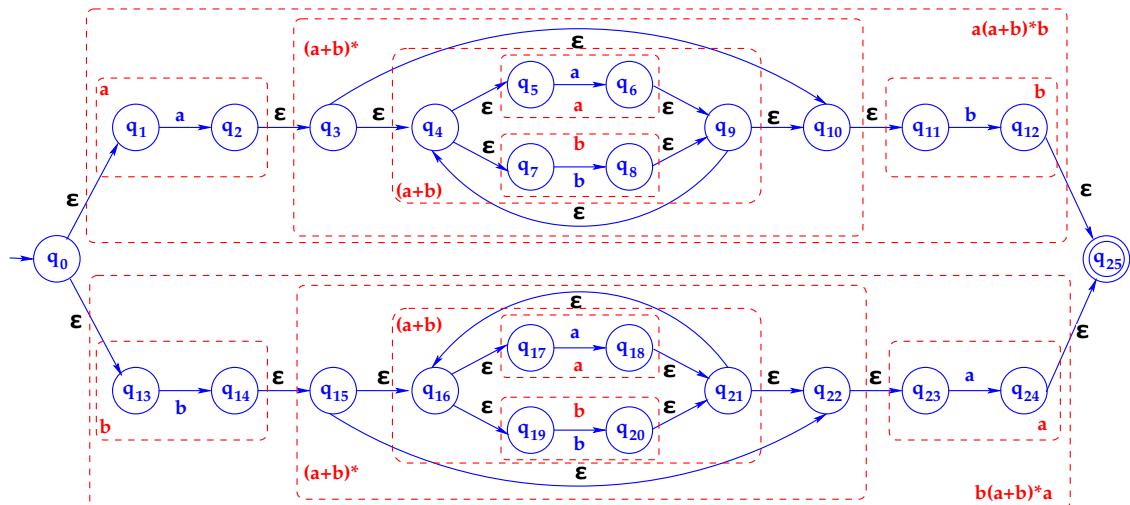
(a) Give a regular expression for the language L_y with a brief justification. (2)

Solution:

$$\underbrace{a (a+b)^* b}_{\text{strings begin with } a \text{ and end with } b} + \underbrace{b (a+b)^* a}_{\text{strings begin with } b \text{ and end with } a}$$

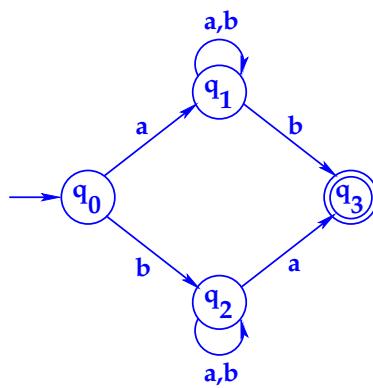
(b) From the regular expression formed in part (a), algorithmically construct a non-deterministic finite automaton (NFA) with ϵ -transitions accepting the language L_y and show stepwise how you proceed to do the same. Show state-transition diagram(s), not its mathematical definition(s). (4)

Solution:



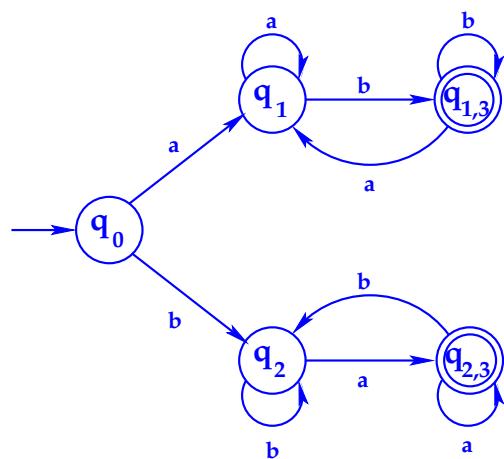
(c) Present a 4-state NFA N (without any ϵ transition) accepting L_y . Show the state-transition diagram for N , not its mathematical definition. (2)

Solution:



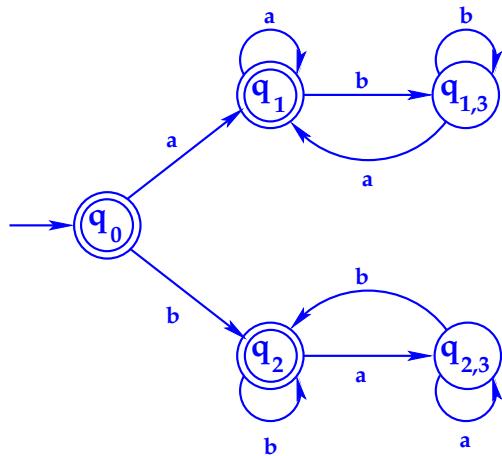
(d) Apply subset construction procedure to convert the above NFA N , that you produced in part (c), to an equivalent DFA D . Show state-transition diagram for D , not its mathematical definition. (3)

Solution:



(e) Modify your DFA D , that you constructed in part (d), to create \bar{D} so that it accepts the complement of L_y , i.e. $\bar{L}_y = \{a, b\}^* - L_y$. Show the state-transition diagram for \bar{D} , not its mathematical definition. (2)

Solution:



Q3. [Regular Expression and DFA]

Consider the following language over $\{0, 1, 2\}$ and answer the questions asked below.

$$L_z = \{ z \mid z \in \{0, 1, 2\}^* \text{ and } z \text{ contains an even number of 0s, or } z \text{ contains exactly two 1s} \}$$

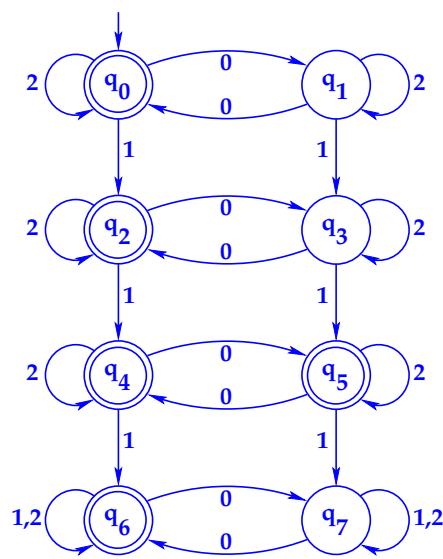
(a) Give a regular expression for the language L_z with a brief justification. (2)

Solution:

$$\begin{array}{ccc}
 \text{strings repeating even number of 0's} & & \text{strings with exactly two 1's} \\
 \text{separated (optionally) with 1's or 2's} & & \text{separated (optionally) with 0's or 2's} \\
 \overbrace{(1+2)^*0(1+2)^*0}^{\text{strings repeating even number of 0's}} (1+2)^* & + & \overbrace{(0+2)^*1(0+2)^*1(0+2)^*}^{\text{strings with exactly two 1's}} \\
 & & \\
 & \text{OR} & \\
 & & \\
 \overbrace{(1+2)^*(0(1+2)^*0(1+2)^*)^*}^{\text{strings repeating even number of 0's}} & + & \overbrace{(0+2)^*1(0+2)^*1(0+2)^*}^{\text{strings with exactly two 1's}} \\
 \text{separated (optionally) with 1's or 2's} & & \text{separated (optionally) with 0's or 2's}
 \end{array}$$

(b) Present a (DFA) accepting the language L_z . Show the state-transition diagram for the DFA, not its mathematical definition. (4)

Solution:



Q4. [Regular Languages]

Suppose that $L \subseteq \{0,1\}^*$ is a regular language. Let us define the following language (set),

$$\text{DEL}_1(L) = \{uv \mid u1v \in L \text{ and } u, v \in \{0,1\}^*\}$$

The set $\text{DEL}_1(L)$ essentially consists of all strings that can be obtained from strings in L by deleting *exactly* one 1. Prove that $\text{DEL}_1(L)$ is also regular. (Hint: Use non-determinism) (5)

Solution:

Let $M = (Q, \Sigma, \delta, s, F)$ be a DFA accepting L where $\Sigma = \{0,1\}$. We construct a NFA $N = (Q_N, \Sigma, \delta_N, s_N, F_N)$ for $\text{DEL}_1(L)$. Define $Q_N = Q \times \{X, Y\}$, $s_N = (s, X)$, $F_N = \{(p, Y) \mid p \in F\}$ and the transition function δ_N as follows: for every $p \in Q$, $b \in \{0,1\}$ let

$$\begin{aligned}\delta_N((p, X), \epsilon) &= \{(\delta(p, 1), Y)\} & \delta_N((p, Y), \epsilon) &= \emptyset \\ \delta_N((p, X), b) &= \{(\delta(p, b), X)\} & \delta_N((p, Y), b) &= \{(\delta(p, b), Y)\}\end{aligned}$$

The machine N basically chooses the 1 to delete non-deterministically. State of the form (p, X) indicates that the 1 has not yet been chosen. There is an ϵ -transition from every such state to state (q, Y) so that M makes a move from state p to state q upon reading 1. Here, the second component in (q, Y) indicates 1 has been seen and skipped/deleted. This ensures that the computation of M processing that particular occurrence of 1 is ignored. All other transitions remain activated similarly as they were in M . Also once a 1 has been deleted, the machine N behaves exactly as M , that is, there are no ϵ -transitions from states of the form $(p, 1)$. A string is accepted if after processing it, N reaches an accepting state after deleting a 1 i.e., it reaches a state of the form (p, Y) where $p \in F$. This proves that $\text{DEL}_1(L)$ is also regular as it is accepted by N .

