CS60020 : Foundations of Algorithm Design and Machine Learning (Spring 2026)
Class Test 1
28-Jan-2026 (Wednesday) Maximum Marks: 30 06:30pm — 07:45pm

Solutions to all questions.

Q1. [ Algorithm Complexity ]

Prove the following: If f(n) = O(g(n)) and f(n) = Q(g(n)), then f(n) = O(g(n)). 3)
Solution:
f(n)=0(g(n)) means f(n) <cig(n) (forall n > ng and for some ¢; > 0)
f(n)=Q(g(n)) means f(n) > crg(n) (for all n > ny and for some c; > 0)

=  f(n)=0(g(n)) by definition, because cg(n) < f(n) <cig(n) (forall n > max{ngp,n;})

Q2. [ Algorithm Design ]

Consider the problem rod cutting, where given a rod of length R, and a set S of n pieces which form
the required items that are needed to be cut (each piece less than R), you need to find a subset of
S of pieces which can be cut from the rod R such that the remaining unusable portion of the rod is
minimized. Please note that each cut also creates a wastage of size p. Therefore, we need to minimize
the total loss comprising of the remaining unused portion and the wastage due to cuts.

Answer the following questions.

(a) Present a recursive definition to solve the problem. Clearly define the arguments, the return
values, base condition, recursive calls and final solution formation. Explain each of the steps.  (8)

Solution:

This problem is similar in spirit to the knapsack problem and can be solved using a recursive
inclusion—exclusion strategy.

Definitions and Parameters

Let:

- C={c1,ca,...,c,} be the initial set of all available pieces.
S be the subset of pieces selected so far.

T be the remaining set of pieces yet to be considered.

L be the remaining usable length of the rod.

W be the accumulated wastage due to cuts.
k be the number of remaining pieces in 7.

p be the wastage incurred per cut.

The recursive procedure is initially called as: ~ PIECES(0,C,R,0,n)
The function returns a pair (P, D) where:

— P is the selected subset of pieces.
— D is the total loss (unused rod length plus cut wastage).
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Recursive Definition

Algorithm 1 : Recursive Piece Selection with Wastage
1: function PIECES(S,T,L,W,k)
2: if k=0 or L =0 then

3: // Base case: no pieces or no rod length left
4. // Total loss = unused rod length + accumulated wastage
5: return (S, L+ W)
6: end if
7: c <+ first element of T
8: // Select the next piece to consider
9: <P1,D1> %<@,°0>
10: // Initialize inclusion case with worst possible loss
11: if c = L then
12: // Case 1: piece fits exactly, no cut required
13: (P1,D1) < PIECES(SU{c}, T\ {c},L—c,W,k—1)
14: else if ¢ + p < L then
15: // Case 2: piece obtained by cutting, wastage incurred
16: (P1,D1) < PIECES(SU{c}, T\ {c},L—c—p,W+p,k—1)
17: end if
18: // Case 3: exclude the current piece

19: (Py,Dy) +— PIECES(S,T \ {c},L,W.k—1)
20: if D < D, then

21: // Choose the option with smaller total loss
22: return (P,D1)

23: else

24: return (P>, D»)

25: end if

26: end function

Explanation of Steps

The algorithm recursively explores inclusion and exclusion of each piece.

If a piece fits exactly, it is selected without any wastage.

Otherwise, the piece is selected only if a cut can be made, incurring wastage p.

The exclusion branch skips the current piece.

Among all possibilities, the solution with minimum total loss is chosen.

Final Solution

The final solution is obtained from the initial recursive call: ~ PIECES(0,C,R,0,n),
which returns the subset of pieces that minimizes the total loss.

(b) Show the working of your approach using a non-trivial example on a set S having at least 8
items. 4)
Solution:

Working of the Recursive Approach

We illustrate the working of the recursive algorithm using the following non-trivial example.

Let: R=20, p=1, C={2,3,4,5,6,7,8,9}

The initial recursive call is:  PIECES(0,C,L = 10,W =0,k =38)

The recursion proceeds by considering each piece using an inclusion—exclusion strategy. At
every step, the algorithm decides whether to include the current piece (with or without cut
wastage) or exclude it. The total loss is computed only at the base case.
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Recursive Execution Tree

The complete working of the algorithm for this example is shown below as a recursion tree. One
branch is expanded fully until the base case, while other branches are abbreviated for clarity.

Rod lengthR=20,p=1

C={2,3,456,789%}

Initial parameters: S=2,
T=C,L=10, W=0, K=
8

l

[{},423,456,7,8,9%, 10

7 T
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;71
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v v
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Total loss = 5 6]
exclude i’ﬁclude
V v

[{2,4},156,7,8,9,2,2, [{},43,4567809},10,
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6]
& exclude exclude
[{3,4},156,7,89},1,2, [3}%,456,7,89},6,1,5
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v \\
[ {3,4%,16,7,8,9,1,2,0 /
1 D EI [{3},16,7,89},6,1,4]
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6v
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[{3,6},{7,89},0,1,3]
1
total loss =1 ==> {3,6}

Observations

The recursion tree demonstrates how the algorithm explores different subsets of pieces using
inclusion and exclusion. Each leaf node corresponds to a base case where the total loss (unused
rod length plus cut wastage) is computed. The algorithm finally selects the subset of pieces that
yields the minimum total loss.
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Q3. [ Decision-Tree Learning ]

Consider the following data set containing the information for 10 employees of IIT Kharagpur for a
binary classification problem about their mode of travel to office. The Travel-Mode (by cycle or by
car) has been collected along with their Designation (faculty or staff) and Residence (in campus or
outside). For example, the first row of the following table is interpreted as — two Faculty members
staying in Campus travel to their office via Cycle. Answer the following questions.

(Attributes) (Outcome)
| # Instances || Designation | Residence | Travel-Mode |

2 Faculty Campus Cycle
1 Faculty Campus Car

1 Faculty Outside Cycle
3 Faculty Outside Car

3 Staff Campus Cycle

(a) Calculate the overall entropy and Gini-index for this dataset (before any splitting). 2)

Solution:
The overall entropy before splitting is:

6 6\ 4 4
Eorigina = — 75108 (E>—Elog (E) — 09710

The overall Gini-index before splitting is:

6\2 4\2
Goriginal = 1_(5) _<E> = 0.4800

(b) Calculate the information gain when splitting on attributes, Designation and Residence.
Which attribute would the decision tree algorithm choose to split? Show the calculations. “

Solution:
The information gain after splitting on the attribute Designation is:

3 3 4 4
EDesignation:Faculty = —?log (?> — ?log <?> = 0.9852
3 3 0 0
EDeSignation:Staff = —glog (g) — glog <§> =0
. : 7 3
Information Gam’DeSig”atio” - EOrigi"al - EEDesignation:Faculty - EEDesignation:Staff
= 0.2814

The information gain after splitting on the attribute Residence is:

5 5 1 1
EResidence:Campus = _6 log (6> - 8 log <8> = 0.6500
1 1 3 3
EResidence—ouside = —~1 (7>—71 <7) — 08113
Residence=Outside 4 og 4 4 0og 4
. . 6 4
Information Galn|Residence = Euriginal - EEResidence:Campus - TOEResidence:mttside
= 0.2565

Therefore, the attribute Designation will be chosen to split by the decision tree algorithm.

(c) Calculate the Gini-index gain when splitting on attributes, Designation and Residence. Which
attribute would the decision tree algorithm choose to split? Show the calculations. “@

Solution:
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The Gini-index gain after splitting on the attribute Designation is:

3IN2 4N 2
GDesignation:Faculty = 1_(*> —<*) = 0.4898

7 7
3\2 0N 2
Gowsgnaion=sarr = 1-(3)" = (3) = ©
Information Gain|pesignation = Goriginal — EGDesignation:Facul[y - EGDeSignati on=Staff
= 0.1371

The Gini-index gain after splitting on the attribute Residence is:

5\2 1\2
GResidence:Campus = 1_(*> —<*> = 0.2778

6 6
N2 /382
GResidence=Outside = 1-— (Z> - <Z) = 0.3750
o 6 4
Information Galn|Residence = Goriginal - EGResidence:Campus - EGResidence:Othside
= 0.1633

Therefore, the attribute Residence will be chosen to split by the decision tree algorithm.

Q4. [ Bayesian Learning ]

Suppose x1,x7,...,x, denote a set of random i.i.d. samples drawn from a Poisson distribution with
mean A > 0. The probability mass function of a Poisson is given as, p(x | 1) = efj!lx. Derive the
maximum likelihood estimator (1) for A. (5)

Solution:

The likelihood function is expressed as,

n *”k/'L (kgl Xk)
Lixi,x2,....% | A) = []pl2) = A
k=1 [T ()
h—

The log likelihood function is expressed as,
n n
L(xi,x2, 05 |2) = —nd+ (Y ) A=Y In(yl)
k=1 k=1
To find the maximum log likelihood, we proceed as follows:
9 InL( | 1) 0
— X1,X2, .0y X, =
EY) 1,42, sAn
l n
— — — = 0
n—+ 1 <I;1)Ck>

Therefore, the Maximum Likelihood Estimator for A is,

Lo
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