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Q1. [ Decision Tree Learning ] 8 marks
The table (shown right) contains data
samples of six patients examined in a
hospital. Use entropy based information
gain measures to construct a minimal de-
cision tree that can predict whether or not
a patient is likely to have a heart attack.
Show each step of your computation.

Patient Attributes Heart
IDs Gender Smoker Exercise ChestPain Attack

1 Female No Regular Yes YES
2 Male No Never Yes YES
3 Male Yes Never No YES
4 Female No Never No NO
5 Male Yes Regular Yes YES
6 Male No Regular No NO

Solution: [ Helper Data: log2 3 = 1.585 ]

The entropy of the training examples (given sample set S) is,
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So, the information gain (which is Entropy(S)−Entropy(Attribute)) is highest for ChestPain.

For ChestPain = YES, all three samples result HeartAttack = YES.

For ChestPain = NO, two samples result HeartAttack = YES and one sample results HeartAttack
= NO. So, the measured entropy for ChestPain = NO is,
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So, the information gain (which is Entropy(S|ChestPain=NO)−Entropy(Attribute)) is highest for
Smoker. This finally completes the classification of all examples perfectly. The final decision tree is:

ChestPain

Yes↙ ↘ No

⊕ Smoker

Yes↙ ↘ No

⊕ ⊖
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Q2. [ Artificial Neural Networks (ANN): Backpropagation ] 18 marks

Consider the 3-layer ANN (having one input, one output
and one hidden layer) given in the figure (right) which is be-
ing trained to distinguish between nails (output encoding
as 10) and screws (output encoding as 01). Let the learning
rate be η = 0.1 and the initial weights (wi j from a node i to
another node j) are mentioned in the directed edges of the
figure. Also, the bias (w0 j for a node j) is specified beside
each node (neuron) directly. Assume that, each node (neu-
ron), n j (3≤ j ≤ 7), applies the default sigmoid activation
function

(
i.e., o j = σ(s j) =

1
1+exp(−s j)

)
over the weighted

input sum
(
i.e., s j = w0 j +∑

i
wi joi

)
.

Suppose you train this ANN with only one example:
T =

{
(0.6,0.1), nail

}
, which indicates that when the inputs are o1 = 0.6 and o2 = 0.1, the true out-

comes become d6 = 1 and d7 = 0 (target class being nail). Answer the following questions.

(a) Allowing a forward pass with the training example T , compute the values of the outputs of all
nodes/neurons. In particular, show your calculation in details for every s j and o j (3≤ j ≤ 7). (5)
Solution:

s3 = 0.1+(0.1×0.6−0.2×0.1) = 0.14

o3 =
1

1+ exp(−0.14)
= 0.535

s4 = 0.2+(0×0.6+0.2×0.1) = 0.22

o4 =
1

1+ exp(−0.22)
= 0.555

s5 = 0.5+(0.3×0.6−0.4×0.1) = 0.64

o5 =
1

1+ exp(−0.64)
= 0.655

s6 = −0.1+(−0.4×0.535+0.1×0.555+0.6×0.655) = 0.135

o6 =
1

1+ exp(−0.135)
= 0.534

s7 = 0.6+(0.2×0.535−0.1×0.555−0.2×0.655) = 0.521

o7 =
1

1+ exp(−0.521)
= 0.627

(c) Present the (delta) weight update rule/equation followed during backpropagation of ANNs. (2)
Solution:

wnew
i j ← wi j +∆wi j (weight update) and ∆wi j = η×δ j×oi

where, (error) δ j =

{
(d j−o j)×o j× (1−o j), for output layer nodes

∑
k
(w jk×δk)×o j× (1−o j) for hidden layer nodes
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(c) Allowing a backward pass with the training example T , compute the updates for each weight
in the network (as per your equation given in Part (b)). In particular, show your calculation in
details for every δ j and ∆wi j (where, 0≤ i≤ 5 and 3≤ j ≤ 7). (11)
Solution:

δ7 = (0−0.627)×0.627× (1−0.627) = −0.147

∆w07 = 0.1× (−0.147)×1 = −0.015

∆w37 = 0.1× (−0.147)×0.535 = −0.008

∆w47 = 0.1× (−0.147)×0.555 = −0.008

∆w57 = 0.1× (−0.147)×0.655 = −0.010

δ6 = (1−0.534)×0.534× (1−0.534) = 0.116

∆w06 = 0.1×0.116×1 = 0.012

∆w36 = 0.1×0.116×0.535 = 0.006

∆w46 = 0.1×0.116×0.555 = 0.006

∆w56 = 0.1×0.116×0.655 = 0.008

δ5 = (0.6×0.116−0.2× (−0.147))×0.655× (1−0.655) = 0.0227

∆w05 = 0.1×0.0227×1 = 0.0023

∆w15 = 0.1×0.0227×0.6 = 0.0014

∆w25 = 0.1×0.0227×0.1 = 0.0002

δ4 = (0.1×0.116−0.1× (−0.147))×0.555× (1−0.555) = 0.0065

∆w04 = 0.1×0.0065×1 = 0.00065

∆w14 = 0.1×0.0065×0.6 = 0.00039

∆w24 = 0.1×0.0065×0.1 = 0.00007

δ3 = (−0.4×0.116+0.2× (−0.147))×0.535× (1−0.535) = −0.0189

∆w03 = 0.1× (−0.0189)×1 = −0.00189

∆w13 = 0.1× (−0.0189)×0.6 = −0.00113

∆w23 = 0.1× (−0.0189)×0.1 = −0.00019
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Q3. [ Support Vector Machines (SVM) ] 10 marks

Consider a set of 2-dimensional training data points (x1,x2) belonging to two classes ‘⊕’ and ‘⊖’,
respectively, as shown below.

– Class ‘⊕’: (3,1) ; (3,−1) ; (6,1) ; (6,−1)

– Class ‘⊖’: (1,0) ; (0,1) ; (0,−1) ; (−1,0)

We design a linear hard-margin SVM to classify these linearly separable points. Answer the following.

(a) Pictorially (graphically) represent the constellation of data points and the optimal separating
hyperplane. Write the equation of the optimal separator and mention the width of the margin
(figuring it out manually from the diagram/graph you have shown). (2)
Solution:
The constellation of data points and the optimal separator (with margin) is presented below.

Margin

−

− −

−

++

+ +

(1,0)(−1,0)

(0,−1)

(0,1) (3,1)

(3,−1)

(6,1)

(6,−1)

Separator

SVM tries to maximize the margin between two classes of data points. Therefore, the optimal
decision boundary crosses the point (2,0) and is parallel to vertical axis. Thus, the equation of
optimal separator is given as, x1−2 = 0, having the width of the margin = 2-units.

(b) Which data points are the support vectors here? (2)
Solution:
Support vectors are (3,1), (3,−1) and (1,0). These three points have minimum perpendicular
distance from the separator line (Euclidean distance of 1 unit).
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(c) What weight vector and threshold (bias) value are being learnt using hard-margin SVM training
algorithm with these eight training points? Show the detailed calculations. (4)
Solution:
Let the weight vector learnt be of the for w = [w1,w2]

T and threshold/bias is b.
From the three support vectors, (3,1), (3,−1) and (1,0) (which are the closest points from the
separating line), we get,

3w1 +w2 +b = +1

3w1−w2 +b = +1

w1 +b = −1

Solving above equations, we get, w1 = 1, w2 = 0, and b =−2.

(d) Using the learnt weights and threshold values (in part (c)), what is the margin you get for the
optimal classifier? Derive mathematically. (2)
Solution:

Margin =
2
||w||

=
2√

w2
1 +w2

2

= 2.
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Q4. [ Classifier Evaluation ] 9 marks

You wrote a spam filtering program by yourself and now you are testing your program on 100 emails
among which you already knew that 20% emails are spams. However, upon running your program on
those 100 email corpus, it predicted 1

2 of the ‘spam’ emails as non-spam. Answer the following:

(a) In order to push the Accuracy ≥ 75%, how many ‘non-spam’ emails at most (maximum) you
can afford to mis-predict as spams? (3)
Solution:
Suppose, the spam filtering program can afford to mis-predict at most M ‘non-spam’ emails
as spams. As per the problem, among 100 total test emails, 20 are actual spams, and hence
T P = FN = 10. So, we have, FP = M and T N = 80−M.

Accuracy =
T P+T N

T P+T N +FP+FN
=

10+(80−M)

100
≥ 3

4
=⇒ M ≤ 15

So, this spam filtering program can afford to mis-predict at most 15 ‘non-spam’ emails as spams.

(b) With the derived setup in Part (a), i.e., when your Accuracy is exactly 75%, present the confusion
matrix (in tabular form). (3)
Solution:

(Actual) (Actual)
Confusion Matrix Spam Emails Non-Spam Emails

(Predicted) Spam Emails 10 (TP) 15 (FP)
(Predicted) Non-Spam Emails 10 (FN) 65 (TN)

Alternative Approach:

(Actual) (Actual)
Confusion Matrix Non-Spam Emails Spam Emails

(Predicted) Non-Spam Emails 65 (TP) 10 (FP)
(Predicted) Spam Emails 15 (FN) 10 (TN)

(c) As per your confusion matrix that you presented in Part (b), calculate Precision, Recall and
F1-score of your spam filtering program. (3)
Solution:

Precision =
T P

T P+FP
=

10
10+15

= 0.4

Recall =
T P

T P+FN
=

10
10+10

= 0.5

F1-score = 2× Precision×Recall
Precision+Recall

= 2× 0.4×0.5
0.4+0.5

≈ 0.44

Alternative Approach:

Precision =
T P

T P+FP
=

65
65+10

≈ 0.87

Recall =
T P

T P+FN
=

65
65+15

≈ 0.81

F1-score = 2× Precision×Recall
Precision+Recall

≈ 2× 0.87×0.81
0.87+0.81

≈ 0.84
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Q5. [ Dimensionality Reduction: Principal Component Analysis (PCA) ] 8 marks

Given the (x,y)-coordinates of four data points in two-dimensional space: (4,1), (2,3), (5,4) and
(1,0), calculate the first principal component. Show your calculations in details.

Solution:

The mean of the given data points is:
(4+2+5+1

4
1+3+4+0

4

)
= (3,2).

The covariance matix can be constructed as:

CoVar(x,x) = Var(x) =

[
(4−3)2 +(2−3)2 +(5−3)2 +(1−3)2]

4
=

5
2

CoVar(x,y) = CoVar(y,x) =

[
(4−3)× (1−2)+(2−3)× (3−2)+(5−3)× (4−2)+(1−3)× (0−2)

]
4

=
3
2

CoVar(y,y) = Var(y) =

[
(1−2)2 +(3−2)2 +(4−2)2 +(0−2)2]

4
=

5
2

∴ CoVar =
[

CoVar(x,x) CoVar(x,y)
CoVar(y,x) CoVar(y,y)

]
=

[ 5
2

3
2

3
2

5
2

]
.

To compute eigenvalues, we make
∣∣ CoVar−λ I

∣∣= 0, which gives:

(
5
2
−λ )2− 9

4
= 0 =⇒ λ = 4,1

The corresponding eigenvector with respect to the highest eigenvalue is the principal component,
which is computed as,[ 5

2
3
2

3
2

5
2

]
.

[
x
y

]
= 4.

[
x
y

]
=⇒ [x,y]T =

[ 1√
2
,

1√
2

]T
.

Alternative Approach:

Since the mean of the given data points, X =


4 1
2 3
5 4
1 0

 is (3,2), we can center the given points with

respect to mean as, X̂ =


1 −1
−1 1

2 2
−2 −2

.

Now, X̂T .X̂ =

[
10 6

6 10

]
.

(Divide by 4 if you want the sample covariance matrix, but we do not care about the magnitude here.)

Its eigenvectors are
[

1√
2
, 1√

2

]T
for eigenvalue 16 and

[
1√
2
,− 1√

2

]T
for eigenvalue 4. The former

eigenvector is chosen to be the principal component (as the corresponding eigenvalue is the highest).
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Q6. [ Learning Theory: VC Dimension ] 15 marks

(a) What the VC-dimension of axis-aligned rectangles in a 2-dimensional plane? Justify / Prove. (5)
Solution:
The VC-dimension of axis-aligned rectangles is 4. We prove dVC = 4 as follows:

– There exist 4 points that can be shattered. Hence, dVC ≥ 4.
Proof: It is clear that capturing just 1 point and all 4 points are both trivial, because a
bounding rectangle can cover them easily. The figure below shows how we can capture a
general constellation of 2 points and 3 points.

– No set of 5 points can be shattered. Hence, dVC < 5.
Proof: Suppose we have 5 points. A shattering must allow us to select all 5 points and allow
us to select 4 points without the 5-th.

Our minimum enclosing axis-aligned rectangle that allows us to select all five points is
defined by only four points – one for each edge. So, it is clear that the fifth point must lie
either on an edge or on the inside of the rectangle. This prevents us from selecting four
points without the fifth, thereby disallowing the possibility to realize all dichotomies for
general constellations of 5 points.
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(b) What is the VC-dimension of axis-aligned squares in a 2-dimensional plane? Justify / Prove. (5)
Solution:
The VC-dimension of axis-aligned squares is 3. We prove dVC = 3 as follows:

– There exist 3 points that can be shattered. Hence, dVC ≥ 3.
Proof: Again, 1 point and 3 points are trivial, because a bounding square can cover them
easily. The figure below shows how we can capture a general constellation of 2 points.

– No set of 4 points can be shattered. Hence, dVC < 4.
Proof: Suppose we have four points arranged such that they define a rectangle. Now, sup-
pose we want to select two points (A and C, in this case).

The minimum enclosing square for A and C must contain either B or D – so we cannot
capture just two points with a axis-aligned square.

— Page 9 of 16 —



(c) Let the VC-dimensions of two hypothesis classes, H1 and H2, be VCDim(H1)= d1 and VCDim(H2)=
d2. Prove that, the VC-Dimension of the union of these hypothesis, i.e. H = H1∪H2, will be at
most (d1 +d2 +1), i.e. VCDim(H)≤VCDim(H1)+VCDim(H2)+1. (5)
Solution:
By the definition of growth function on any N points for a hypothesis class H , we know that,

mH (N)≤
dVC

∑
i=0

(N
i

)
, where VCDim(H ) = dVC is the VC-dimension of H .

Let the growth functions on any N points of the hypothesis classes, H1, H2 and H, are denoted
by mH1(N), mH2(N) and mH(N), respectively. Since we have H = H1∪H2, we can write

mH(N)≤ mH1(N)+mH2(N).

Taking N = d1 +d2 +2, we can proceed as follows:

mH(N)≤ mH1(N)+mH2(N) ≤
d1

∑
i=0

(
N
i

)
+

d2

∑
i=0

(
N
i

)
=

d1

∑
i=0

(
d1 +d2 +2

i

)
+

d2

∑
i=0

(
d1 +d2 +2

i

)
=

d1

∑
i=0

(
d1 +d2 +2

i

)
+

d2

∑
i=0

(
d1 +d2 +2

d1 +d2 +2− i

)
=

d1

∑
i=0

(
d1 +d2 +2

i

)
+

d1+d2+2

∑
i=d1+2

(
d1 +d2 +2

i

)

=
d1+d2+2

∑
i=0

(
d1 +d2 +2

i

)
−
(

d1 +d2 +2
d1 +1

)
= 2d1+d2+2−

(
d1 +d2 +2

d1 +1

)
< 2d1+d2+2 = 2N

=⇒ mH(d1 +d2 +2)< 2d1+d2+2 =⇒ (d1 +d2 +2) is a break point of H

=⇒ VCDim(H)≤ d1 +d2 +1

Therefore, VCDim(H)≤VCDim(H1)+VCDim(H2)+1. [Proved]
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Q7. [ Bayesian Learning: Expectation-Maximization (EM) Algorithm ] 16 marks

Consider the Bayes Network structure shown below. From the figure below, we abbreviate as follows:
S = Study well, A = high Attendance, G = good Grade, P = better Placement, C = high CGPA.

Study Attendance

↘ ↙
Grade

↙ ↘
Placement CGPA

You are given the following K = 8 training examples as shown below, where only two examples
contain unobserved values (marked with ?), namely, p7 and c8. You have to simulate a few steps of
the simplified EM algorithm by hand.

K S A G P C
k = 1 1 0 1 1 1
k = 2 0 1 1 1 0
k = 3 1 1 1 1 1
k = 4 0 0 0 0 1
k = 5 0 0 0 1 0
k = 6 0 0 0 0 0
k = 7 1 1 1 ? 1
k = 8 1 1 1 1 ?

Notation: Here, sk, ak, gk, pk, and ck indicate the values of S, A, G, P, and C, respectively, as seen in
the k-th example/row. For example, s1 = 1, a1 = 0, g1 = 1, p1 = 1, and c1 = 1.

Answer the following questions:

(a) Given that all variables are Boolean, how many basic parameters you need to estimate for the
given Bayes Network?
For example, one parameter will be θ(g | 11), which stands for P(G = 1 | S = 1,A = 1). (1)
Solution:
We need to estimate 10 parameters, which are given as follows:

θ(s) = P(S = 1) θ(a) = P(A = 1)

θ(g | 00) = P(G = 1 | S = 0, A = 0) θ(g | 01) = P(G = 1 | S = 0, A = 1)

θ(g | 10) = P(G = 1 | S = 1, A = 0) θ(g | 11) = P(G = 1 | S = 1, A = 1)

θ(p | 0) = P(P = 1 | G = 0) θ(p | 1) = P(P = 1 | G = 1)

θ(c | 0) = P(C = 1 | G = 0) θ(c | 1) = P(C = 1 | G = 1)
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(b) Now, you need to simulate the first E-step of the EM algorithm. Before you start, you initial-
ize all the parameters as 0.5, and then proceed to execute the E-step. What are the following
expectation values that will get calculated in this E-step? In particular, calculate the following: (5)

• E(p7 = 1 | s7,a7,g7,c7,θ) =? • E(c8 = 1 | s8,a8,g8, p8,θ) =?

(Note that, only two examples (k=7 and k=8) contains unobserved variables, where p7 =?, but
s7 = a7 = g7 = c7 = 1; and c8 =?, but s8 = a8 = g8 = p8 = 1, respectively.)
Solution:

∴ E(p7 = 1 | s7,a7,g7,c7,θ)

=
P(p7 = 1,s7,a7,g7,c7 | θ)

P(p7 = 1,s7,a7,g7,c7 | θ)+P(p7 = 0,s7,a7,g7,c7 | θ)

=
θ(p7 = 1 | g7).θ(g7|s7,a7).θ(s7).θ(a7)

θ(p7 = 1 | g7).θ(g7|s7,a7).θ(s7).θ(a7)+θ(p7 = 0 | g7).θ(g7|s7,a7).θ(s7).θ(a7)

=
0.5×0.5×0.5×0.5

2×0.5×0.5×0.5×0.5
= 0.5 = E(p7 = 1 | g7 = 1,θ(p | 1))

∴ E(c8 = 1 | s8,a8,g8, p8,θ)

=
P(c8 = 1,s8,a8,g8, p8 | θ)

P(c8 = 1,s8,a8,g8, p8 | θ)+P(c8 = 0,s8,a8,g8, p8 | θ)

=
θ(c8 = 1 | g8).θ(g8|s8,a8).θ(s8).θ(a8)

θ(c8 = 1 | g8).θ(g8|s8,a8).θ(s8).θ(a8)+θ(c8 = 0 | g8).θ(g8|s8,a8).θ(s8).θ(a8)

=
0.5×0.5×0.5×0.5

2×0.5×0.5×0.5×0.5
= 0.5 = E(c8 = 1 | g7 = 1,θ(c | 1))
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(c) Now, you need to simulate the first M-step of the EM algorithm. What will be the estimated
values of all the model parameters (which you identified in Part (a)) after this M-step? (5)
(Note that, you can use the expected count only when the variable is unobserved in an example)
Solution:
10 parameters will get the updated values as follows:

θ(s) = P(S = 1) =
#{S = 1}

#K
=

4
8
= 0.5

θ(a) = P(A = 1) =
#{A = 1}

#K
=

4
8
= 0.5

θ(g | 00) = P(G = 1 | S = 0,A = 0) =
#{G = 1,S = 0,A = 0}

#{S = 0,A = 0}
=

0
3
= 0.0

θ(g | 01) = P(G = 1 | S = 0,A = 1) =
#{G = 1,S = 0,A = 1}

#{S = 0,A = 1}
=

1
1
= 1.0

θ(g | 10) = P(G = 1 | S = 1,A = 0) =
#{G = 1,S = 1,A = 0}

#{S = 1,A = 0}
=

1
1
= 1.0

θ(g | 11) = P(G = 1 | S = 1,A = 1) =
#{G = 1,S = 1,A = 1}

#{S = 1,A = 1}
=

3
3
= 1.0

θ(p | 0) = P(P = 1 | G = 0) =
#{G = 0}.E[P = 1]

#{G = 0}
=

(1×1.0+2×0.0)
3

= 0.33

θ(p | 1) = P(P = 1 | G = 1) =
#{G = 1}.E[P = 1]

#{G = 1}
=

(4×1.0+1×0.5)
5

= 0.9

θ(c | 0) = P(C = 1 | G = 0) =
#{G = 0}.E[C = 1]

#{G = 0}
=

(1×1.0+2×0.0)
3

= 0.33

θ(c | 1) = P(C = 1 | G = 1) =
#{S = 1}.E[C = 1]

#{G = 1}
=

(3×1.0+1×0.0+1×0.0)
5

= 0.7
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(d) Lastly, you again simulate the second E-step of the EM algorithm. What are the following
expectation values that will get calculated in this E-step? In particular, calculate the following: (5)

• E(p7 = 1 | s7,a7,g7,c7,θ) =? • E(c8 = 1 | s8,a8,g8, p8,θ) =?

Solution:

∴ E(p7 = 1 | s7,a7,g7,c7,θ)

=
P(p7 = 1,s7,a7,g7,c7 | θ)

P(p7 = 1,s7,a7,g7,c7 | θ)+P(p7 = 0,s7,a7,g7,c7 | θ)

=
θ(p7 = 1 | g7).θ(g7|s7,a7).θ(s7).θ(a7)

θ(p7 = 1 | g7).θ(g7|s7,a7).θ(s7).θ(a7)+θ(p7 = 0 | g7).θ(g7|s7,a7).θ(s7).θ(a7)

=
0.9×1.0×0.5×0.5
1.0×1.0×0.5×0.5

= 0.9 = E(p7 = 1 | g7 = 1,θ(p | 1))

∴ E(c8 = 1 | s8,a8,g8, p8,θ)

=
P(c8 = 1,s8,a8,g8, p8 | θ)

P(c8 = 1,s8,a8,g8, p8 | θ)+P(c8 = 0,s8,a8,g8, p8 | θ)

=
θ(c8 = 1 | g8).θ(g8|s8,a8).θ(s8).θ(a8)

θ(c8 = 1 | g8).θ(g8|s8,a8).θ(s8).θ(a8)+θ(c8 = 0 | g8).θ(g8|s8,a8).θ(s8).θ(a8)

=
0.7×1.0×0.5×0.5
1.0×1.0×0.5×0.5

= 0.7 = E(c8 = 1 | g7 = 1,θ(c | 1))
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Q8. [ Unsupervised Learning: K-Means Clustering ] 16 marks

Suppose the following dataset (consisting of (x,y)-coordinates of eight data points in a 2-dimensional
plane) is given: (1,2), (2,5), (2,10), (4,9), (5,8), (6,4), (7,5), and (8,4). You need to run K-
Means algorithm (till termination) with K = 3 to cluster these points. Assume that, Euclidean distance
measure is used as the distance computing function for the dataset. Answer the following.

(a) Assuming the initial centroids as (1,2), (2,10), and (5,8), show in details the execution of K-
Means algorithm (till termination) with K = 3. In particular, indicate the set of points that come
under each cluster after every iteration and also compute their centroid to be used for the next
iteration. Indicate when and how you decided to terminate/stop. (8)
Solution:

Iteration Output Cluster-1 Cluster-2 Cluster-3
0 Points − − −

(init.) Centroid (1,2) (2,10) (5,8)
1 Points (1,2), (2,5) (2,10) (4,9), (5,8), (6,4), (7,5), (8,4)

(cont.) New Centroid (1.5,3.5) (2,10) (6,6)
2 Points (1,2), (2,5) (2,10), (4,9) (5,8), (6,4), (7,5), (8,4)

(cont.) New Centroid (1.5,3.5) (3,9.5) (6.5,5.25)
3 Points (1,2), (2,5) (2,10), (4,9), (5,8) (6,4), (7,5), (8,4)

(cont.) New Centroid (1.5,3.5) (3.67,9) (7,4.33)
4 Points (1,2), (2,5) (2,10), (4,9), (5,8) (6,4), (7,5), (8,4)

(stop) New Centroid (1.5,3.5) (3.67,9) (7,4.33)

Decision to terminate: When the set of points inside clusters remain unchanged across iterations.

Iteration-0 Iteration-1

Iteration-2 Iteration-3,4
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(b) Upon termination, compute the average silhouette coefficient (SC) of the overall clustering only
for the three clusters formed. Show your calculations in details. (8)
Note: For your convenience, pairwise distances between points are shown in the following table.

Pairwise Data Points
Distance (1,2) (2,5) (2,10) (4,9) (5,8) (6,4) (7,5) (8,4)

(1,2) 0.000
(2,5) 3.162 0.000
(2,10) 8.062 5.000 0.000

Data (4,9) 7.616 4.472 2.236 0.000
Points (5,8) 7.211 4.243 3.606 1.414 0.000

(6,4) 5.385 4.123 7.211 5.385 4.123 0.000
(7,5) 6.708 5.000 7.071 5.000 3.606 1.414 0.000
(8,4) 7.280 6.083 8.485 6.403 5.000 2.000 1.414 0.000

Solution:
The silhouette coefficient (SC) for each of the points are computed as:

P1 (1,2) : SC = 1− a
b
= 1−

(3.162
1

)(8.062+7.616+7.211+5.385+6.708+7.280
6

) = 0.551

P2 (2,5) : SC = 1− a
b
= 1−

(3.162
1

)(5.000+4.472+4.243+4.123+5.000+6.083
6

) = 0.344

P3 (2,10) : SC = 1− a
b
= 1−

(2.236+3.606
2

)(8.062+5.000+7.211+7.071+8.485
5

) = 0.592

P4 (4,9) : SC = 1− a
b
= 1−

(2.236+1.414
2

)(7.616+4.472+5.385+5.000+6.403
5

) = 0.684

P5 (5,8) : SC = 1− a
b
= 1−

(3.606+1.414
2

)(7.211+4.243+4.123+3.606+5.000
5

) = 0.481

P6 (6,4) : SC = 1− a
b
= 1−

(1.414+2.000
2

)(5.385+4.123+7.211+5.385+4.123
5

) = 0.675

P7 (7,5) : SC = 1− a
b
= 1−

(1.414+1.414
2

)(6.708+5.000+7.071+5.000+3.606
5

) = 0.742

P8 (8,4) : SC = 1− a
b
= 1−

(2+1.414
2

)(7.280+6.083+8.485+6.403+5.000
5

) = 0.743

Cluster-1 :
(
{P1,P2}

)
Average-SC =

0.551+0.344
2

= 0.448

Cluster-2 :
(
{P3,P4,P5}

)
Average-SC =

0.592+0.684+0.481
3

= 0.586

Cluster-3 :
(
{P6,P7,P8}

)
Average-SC =

0.675+0.742+0.743
3

= 0.720

Overall : Average-SC =
0.448+0.586+0.720

3
= 0.585

— Question Paper Ends Here —
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