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1 Types of learning techniques

A concise tabular explanation of the types of learning that are present:

Learning Type Definition Examples Popular Algorithms

Supervised Learning Learns from labeled data to make predictions or classifications. Email spam detection, disease diagnosis, stock price prediction

- Linear Regression
- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- k-Nearest Neighbors (k-NN)
- Neural Networks

Unsupervised Learning Finds hidden patterns or intrinsic structures in data without labeled outputs. Customer segmentation, anomaly detection, topic modeling

- K-Means Clustering
- Hierarchical Clustering
- DBSCAN
- Principal Component Analysis (PCA)
- Autoencoders

Semi-Supervised Learning Combines small amounts of labeled data with large amounts of unlabeled data. Web content classification, medical imaging, speech analysis

- Semi-Supervised SVM
- Label Propagation
- Self-training
- Graph-based methods

Table 1: types of learning and their examples

1.1 Active learning

A type of supervised learning where the model actively selects the most infor-
mative data points to be labeled, aiming to improve learning with fewer labeled
examples.

Aspect Details
Definition A type of supervised learning where the model actively selects the most informative data points to be labeled, aiming to improve learning with fewer labeled examples.
Goal Minimize labeling cost while maximizing model performance.
How It Works The model queries a human (oracle) to label uncertain or ambiguous data points.
Use Cases Medical diagnosis, text classification, fraud detection.

Query Strategies
- Uncertainty Sampling: Pick samples where the model is least confident.
- Query-by-Committee: Use multiple models to find disagreement.
- Expected Model Change: Select samples that would most change the model.

Table 2: Active Learning

Uncertainty Sampling often uses entropy: Entropy(x) = -
∑

i P (yi|x) logP (yi|x)
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1.2 Reinforcement Learning

An area of ML where an agent learns by interacting with an environment, re-
ceiving rewards for good actions and penalties for bad ones.

Aspect Details
Definition An area of ML where an agent learns by interacting with an environment, receiving rewards for good actions and penalties for bad ones.
Goal Learn a policy that maximizes cumulative reward over time.

Key Concepts

- Agent: Learner
- Environment: Where it acts
- State: Current situation
- Action: Choice made
- Reward: Feedback
- Policy (
\pi): Strategy the agent follows

Use Cases Game playing (e.g., AlphaGo), robotics, recommendation systems, self-driving cars

Popular Algorithms

- Q-Learning
- Deep Q-Network (DQN)
- SARSA
- Policy Gradient Methods
- Actor-Critic Models

Table 3: Reinforcement learning

Q(s,a) ← Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)]Where :
s : currentstate
a : actiontaken
r : rewardreceived
s : nextstate
α : learningrate
γ : discountfactor
ThisformularepresentsthecoreQ−learningupdateruleinreinforcementlearning, wheretheQ−
valueforastate−actionpairisupdatedbasedontheimmediaterewardandthemaximumexpectedfuturereward.

2 Clustering Overview

Clustering is an unsupervised learning technique that aims to group similar
data points into clusters such that

• Data points in the same cluster are similar (high cohesion).

• Data points in different clusters are dissimilar (high separation).

Used in:

• Customer segmentation

• Document/topic grouping

• Image segmentation

• Anomaly detection
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2.1 Key ideas

1. Cohesion (Intra-cluster similarity)

• Definition: Measures how close the data points in the same cluster
are to each other.

• Goal: Minimize cohesion (i.e., the tighter the cluster, the better).

Formula (for cluster Ck with centroid µk):

Cohesion(Ck) =
∑

xi∈Ck

∥xi − µk∥2 (1)

Lower cohesion = better compactness.

2. Separation (Inter-cluster dissimilarity)

• Definition: Measures how far apart the clusters are from each
other.

• Goal: Maximize separation (i.e., more distinct clusters).

Formula (between clusters Ci and Cj):

Separation(Ci, Cj) = ∥µi − µj∥2 (2)

Higher separation = better distinctiveness between clusters.

3. Scatter Coefficient (Cluster Evaluation Metric)

• Definition: Combines cohesion and separation to evaluate clustering
quality.

• Also related toDunn Index, Silhouette Score, orDavies-Bouldin
Index.

One common scatter-based metric is the Silhouette Coefficient for a
point i:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3)

Where:

• a(i): average distance between i and other points in the same cluster
(cohesion)

• b(i): minimum average distance between i and points in other clus-
ters (separation)

−1 ≤ s(i) ≤ 1

• s(i) ≈ 1: well-clustered
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• s(i) ≈ 0: on the boundary

• s(i) < 0: likely in the wrong cluster

Figure 1: Description of the clustering metrics visualization

2.2 Analyzing distance function and metrics between two
points

When analyzing distance functions or metrics between two points, there are key
properties we often check: reflexivity, symmetry, and the triangle inequality.
These are crucial in metric spaces and clustering algorithms like K-Means, DB-
SCAN, etc.

Let x, y, z ∈ Rn be points (or vectors), and let d(x, y) be the distance
between x and y.

⋄ 1. Reflexivity

– Definition: A point is always at zero distance from itself.

d(x, x) = 0 (4)

– This means the distance between a point and itself is always zero.

⋄ 2. Symmetry

– Definition: The distance from x to y is the same as from y to x.

d(x, y) = d(y, x) (5)

– This ensures that the direction of comparison doesn’t matter.
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⋄ 3. Triangle Inequality

– Definition: The direct distance from x to z is never greater than
going through an intermediate point y.

d(x, z) ≤ d(x, y) + d(y, z) (6)

– This property ensures consistency and prevents “shortcut violations.”

Together, these properties define a metric or distance function:
A function d : Rn ×Rn → R is a metric if it satisfies :

1. Non-negativity: d(x, y) ≥ 0

2. Identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y

3. Symmetry: d(x, y) = d(y, x)

4. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

Example: Euclidean Distance

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (7)

3 Clustering Concepts

Clustering algorithms generally rely on the idea of grouping data based on their
similarities. The goal is to partition a set of data points into clusters where
points within a cluster are more similar to each other than to those in other
clusters.

3.1 Dendrogram

A dendrogram is a tree-like diagram used to visualize the process of hierarchi-
cal clustering. It records the steps of merging (in agglomerative clustering) or
splitting (in divisive clustering) clusters at each stage. The height of the tree
represents the distance at which the clusters are merged or split.
Key Concepts:
Leaves: Represent individual data points.
Branches: Represent clusters formed by merging.
Height (y-axis): Represents the distance (dissimilarity) between merged clus-
ters.
Example: Dendrogram Using 5 Points.
Let’s say we have 5 points: A, B, C, D, E
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And their pairwise distances are as follows:

A B C D E
A 0 2 6 10 9
B 2 0 5 9 8
C 6 5 0 4 5
D 10 9 4 0 3
E 9 8 5 3 0

Table 4: dendrogram example (pairwise distances)

Clustering Process (Agglomerative)

• Merge A & B → distance = 2

• Merge D & E → distance = 3

• Merge C & (D,E) → distance = 5

• Merge (A,B) & (C,D,E) → distance = 6

Dendrogram visualization:
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Figure 2: Dendrogram for hierarchical clustering.

4 Types of Hierarchical Clustering

There are two main types of hierarchical clustering:

4.1 Agglomerative Hierarchical Clustering (AHC)

Agglomerative clustering is a bottom-up approach. Initially, each data point is
treated as a separate cluster. In each step, the two closest clusters are merged
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until all points belong to a single cluster.

4.1.1 Algorithm

1. Compute the pairwise distance matrix.

2. Treat each data point as a separate cluster.

3. Repeatedly merge the closest pair of clusters.

4. Stop when only one cluster remains.

4.1.2 Linkage Criteria

The distance between two clusters can be defined using different linkage criteria:

D(A,B) =



min
x∈A,y∈B

d(x, y) (Single Linkage)

max
x∈A,y∈B

d(x, y) (Complete Linkage)

1
|A||B|

∑
x∈A

∑
y∈B d(x, y) (Average Linkage)

∥µA − µB∥ (Centroid Linkage)

where d(x, y) represents the distance between two points x and y, and µA

and µB are the centroids of clusters A and B, respectively.

4.2 Divisive Hierarchical Clustering (DHC)

Divisive clustering is a top-down approach. The algorithm starts with all data
points in one large cluster and recursively splits the clusters into smaller ones
until each data point is in its own cluster.

4.2.1 Algorithm

1. Start with the entire dataset as one cluster.

2. Split the cluster into two subclusters.

3. Recursively split the subclusters.

4. Continue until each data point is its own cluster.

5 Complexity Analysis

Let’s discuss the time and space complexities of both agglomerative and divisive
clustering.
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5.1 Agglomerative Hierarchical Clustering

The naive time complexity of agglomerative clustering is derived from the fol-
lowing steps:

• Computing the distance matrix takes O(n2).

• Merging clusters takes O(n2) at each step, and there are n− 1 steps.

Thus, the total time complexity is:

T (n) = O(n2) + (n− 1) ·O(n2) = O(n3)

Optimized versions, such as using priority queues, reduce the complexity to:

T (n) = O(n2 log n)

The space complexity is O(n2) due to the distance matrix.

5.2 Divisive Hierarchical Clustering

Divisive clustering has a worst-case complexity of O(2n), as it considers all
possible splits of the data. However, if k-means or other clustering methods are
used for splitting, the time complexity is reduced to:

T (n) = O(n2 log n)

The space complexity remains O(n2), as pairwise dissimilarities must be
stored.

6 Merits and Demerits of Clustering

6.1 Merits of Clustering

Merit Explanation

Unsupervised
Learning

Clustering doesn’t require labeled data, making it useful when
labels are expensive or unavailable.

Data Exploration It helps to uncover hidden patterns, structures, or relationships
within the data.

Dimensionality Re-
duction

Clustering can act as a preprocessing step to reduce data com-
plexity before applying other algorithms.

Scalability Algorithms like k-means scale well for large datasets.
Adaptability Clustering is used in various domains such as image processing,

market segmentation, bioinformatics, etc.
Improves Inter-
pretability

Clusters help organize data into meaningful categories, making it
easier to interpret than raw data.
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6.2 Demerits of Clustering

Demerit Explanation

No Ground Truth The evaluation of clustering results is challenging without prede-
fined labels or clear metrics.

Choice of k Some algorithms, like k-means, require the number of clusters k
to be predefined.

Sensitivity to Ini-
tialization

Algorithms like k-means can converge to local optima based on
initial cluster centroids.

Assumptions on
Shape/Size

Many algorithms assume clusters are spherical or have similar
sizes.

High Dimensional-
ity Problems

In high-dimensional spaces, distance metrics lose their meaning
(curse of dimensionality).

Noise and Outliers Clustering algorithms are sensitive to outliers, especially centroid-
based methods.

7 Conclusion

Clustering is a powerful tool in unsupervised learning, offering valuable insights
into data structure. However, its performance and applicability depend on the
specific problem at hand and the choice of algorithm. Understanding the com-
plexities, merits, and limitations of various clustering techniques is crucial for
selecting the best method for a given task.
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