
Matrix Multiplication

1 General Method

The naive approach of matrix multiplication is to multiply every element of the rows of a matrix,
say A, to the columns of another matrix, say B, and sum up the products and store them in another
matrix, say C.

C[i][j] =

n∑
k=1

A[i][k].B[k][j] (1)

1.1 Algorithm

Algorithm 1 Naive Matrix Multiplication

1: procedure Matrix-Multiply(A, B)
2: n← number of rows of A
3: Let C be a new n× n matrix
4: for i = 1 to n− 1 do
5: for j = 1 to n− 1 do
6: C[i, j]← 0
7: for k = 1 to n− 1 do
8: C[i, j]← C[i, j] +A[i, k]×B[k, j]
9: end for

10: end for
11: end for
12: return C
13: end procedure

1.2 Time Complexity

Here, multiplication and addition are executed once on each repetition in the innermost loop. So,
the total number of multiplications and additions are,

M(n) =

n−1∑
i=0

n−1∑
j=0

n−1∑
k=0

1 (2)

Solving this will give us T (n) = O(n3), the total complexity incurred while calculating the matrix
multiplication.
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2 Divide and Conquer Method

This approach splits the matrices into smaller sub-matrices and recursively computes their products.
Here, the matrix sizes are assumed to be taken in the order of 2i to make the division easy. For the
n x n matrices, split them into four n/2 x n/2 submatrices: Let us take two matrices, A and B, of
size n x n,

A =

[
A0 A1

A2 A3

]
B =

[
B0 B1

B2 B3

]
Here each of A0, A1, A2... etc. are sub-matrices.

Now, for calculating their product, C=AB, where C0, C1, C2, C3 will be

C =

[
A0 ∗B0 +A1 ∗B2 A0 ∗B1 +A1 ∗B3

A2 ∗B0 +A3 ∗B2 A2 ∗B1 +A3 ∗B3

]

2.1 Algorithm

Algorithm 2 Divide and Conquer Matrix Multiplication

1: procedure Recursive-Matrix-Multiply(A, B)
2: n← number of rows of A
3: if n = 1 then
4: return A[1, 1]×B[1, 1]
5: end if
6: Partition A and B into n/2× n/2 submatrices:
7: A0, A1, A2, A3 and B0, B1, B2, B3

8: C0 ← Recursive−Matrix−Multiply(A0, B0) +Recursive−Matrix−Multiply(A1, B2)
9: C1 ← Recursive−Matrix−Multiply(A0, B1) +Recursive−Matrix−Multiply(A1, B3)

10: C2 ← Recursive−Matrix−Multiply(A2, B0) +Recursive−Matrix−Multiply(A3, B2)
11: C3 ← Recursive−Matrix−Multiply(A2, B1) +Recursive−Matrix−Multiply(A3, B3)
12: Combine C0, C1, C2, C3 into C
13: return C
14: end procedure

2.2 Time Complexity

So, in the above example, we need eight multiplications and four additions to get the final output.
We know that adding two matrices takes O(n2) time complexity.

T (n) = 8T (n/2) +O(n2) (3)

Solving the above equation using the master’s theorem will give us the final complexity of the
divide-and-conquer methodology as O(n3).

From both the above algorithms, the time complexity has not improved. So, now we will look
at the Strassen’s algorithm.
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3 Strassen’s Algorithm

While the divide and conquer uses eight multiplications to get the final output, what Strassen’s
algorithm does is that it tries to lower the number of multiplications involved by giving formulas
that involve seven multiplications instead of 8, thus reducing the complexity by a bit.
Let us take two matrices A and B of size 2 x 2

A =

[
A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]
Now, if we want to find the multiplication of these two matrices, we can do this by simply using

four formulas, which are

C11 = A11 ∗B11 +A12 ∗B21 (4)

C12 = A11 ∗B12 +A12 ∗B22 (5)

C21 = A21 ∗B11 +A22 ∗B21 (6)

C22 = A21 ∗B12 +A22 ∗B22 (7)

Now, we can see that for the 2 x 2 matrix, there are eight multiplications and four additions.
This will take linear time, but as the order of the matrix increases more than 2, it faces the problem
we have seen in the divide and conquer methodology.

So to solve that, Strassen’s Algorithm gives formulas that involve seven multiplications in place
of eight.

Consider two 2× 2 matrices A and B:

A =

[
a b
c d

]
B =

[
e f
g h

]
The standard multiplication of C = A ·B involves 8 multiplications:

C =

[
ae+ bg af + bh
ce+ dg cf + dh

]
Strassen’s algorithm reduces this to 7 multiplications by introducing intermediate products:

M1 = (a+ d)(e+ h),

M2 = (c+ d)e,

M3 = a(f − h),

M4 = d(g − e),

M5 = (a+ b)h,

M6 = (c− a)(e+ f),

M7 = (b− d)(g + h).

Using these, the resulting matrix C is computed as:

C =

[
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

]
Thus, by reusing results through these intermediate products, Strassen’s algorithm reduces the

number of multiplications from 8 to 7, at the expense of more additions and subtractions.
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3.1 Algorithm

Algorithm 3 Strassen’s Matrix Multiplication

1: procedure Strassen(A, B)
2: n← number of rows of A
3: if n = 1 then
4: return A[1, 1]×B[1, 1]
5: end if
6: Partition A and B into n/2× n/2 submatrices:
7: A11, A12, A21, A22 and B11, B12, B21, B22

8: Compute:
9: M1 ← (A11 +A22)(B11 +B22)

10: M2 ← (A21 +A22)B11

11: M3 ← A11(B12 −B22)
12: M4 ← A22(B21 −B11)
13: M5 ← (A11 +A12)B22

14: M6 ← (A21 −A11)(B11 +B12)
15: M7 ← (A12 −A22)(B21 +B22)
16: Compute submatrices of C:
17: C11 ←M1 +M4 −M5 +M7

18: C12 ←M3 +M5

19: C21 ←M2 +M4

20: C22 ←M1 −M2 +M3 +M6

21: Combine C11, C12, C21, C22 into C
22: return C
23: end procedure

3.2 Time Complexity

As the number of multiplications has now changed to 7.
The time complexity now will be

T(n) =

{
1 if n ≤ 2
7T (n/2) + n2 if n > 0

So, now the overall complexity comes to O(n2.81).

There are also a few algorithms that have focused on lowering the complexity even more. Fur-
ther research has used Strassen’s algorithm as a base. Though the number of multiplications is still
seven, I have made some other adjustments to make the complexity a little bit better.
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4 Recent Advances

Algorithms like the Coppersmith-Winograd [2] and Alman-Williams [1] algorithms represent ad-
vanced approaches to matrix multiplication, using tensor representations and contraction optimiza-
tion to minimize computational complexity. Coppersmith-Winograd focuses on expressing matrix
multiplication as a tensor problem, applying recursive divide-and-conquer strategies to achieve a
time complexity of O(n2.376). Alman-Williams builds on this foundation, introducing laser methods
and exploiting tensor symmetries to refine operations further, lowering the complexity to O(n2.372).
A detailed comparison of the number of arithmetic operations and input/output (I/O) complexity
across different state-of-the-art matrix multiplication algorithms is summarized in Table 1.

The paper by Karstadt and Schwartz (2017) refines the Coppersmith-Winograd framework for ma-
trix multiplication by optimizing tensor decompositions and balancing recursive strategies. Their
approach reduces computational complexity slightly, achieving an improved theoretical upper bound
for matrix multiplication. While primarily theoretical, their work demonstrates progress in lowering
the complexity.

Table 1: Comparison of different state-of-the-art algorithms on matrix multiplication.
Year Reference Total Arithmetic Operations Total I/O Complexity

1969 Strassen [5] 7nlog2 7 − 6n2 6
(√

3n√
M

)log2 7

·M − 18n2 + 3M

1971 Winograd [6] 6nlog2 7 − 5n2 5
(√

3n√
M

)log2 7

·M − 15n2 + 3M

2017 Karstadt, Schwartz [3] 5nlog2 7 − 4n2 + 3n2 log2 n 4
(√

3n√
M

)log2 7

·M − 12n2 + 3n2 · log2
(√

2n√
M

)
+ 5M

2023 Schwartz, Vaknin [4] 5nlog2 7 − 4n2 + 1.5n2 log2 n 4
(√

3n√
M

)log2 7

·M − 12n2 + 1.5n2 · log2
(√

2n√
M

)
+ 5M
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