Machine Learning Scribe: Overfitting
and Regularization

Course Code: CS60020
Instructor: Prof. Aritra Hazra
Scribe: Sushrut Joshi

Date: 3 April 2025

Overfitting Fundamentals

Overfitting occurs when a model learns not just the underlying patterns in the training
data, but also the noise or randomness. This leads to poor generalization on unseen data.

Types of Noise and Overfitting

1. Stochastic Noise:
This refers to the random noise inherent in the data — due to measurement
errors, natural randomness, etc. If a model fits this noise, it's overfitting because it’s
modeling randomness rather than signal.

2. Deterministic Noise:
This is caused by the mismatch between the complexity of the true function and
the hypothesis class. For example, if the true target function is quadratic and we're
using a linear model, we can't capture the true function without error. Attempting to
use an excessively complex model (e.g., high-degree polynomial) to fit such data
introduces overfitting due to trying to force-fit the noise.

Error vs. Number of Training Examples

e As the number of training examples increases, overfitting decreases, because
the model gets a more complete picture of the underlying data distribution.

More noise (stochastic or deterministic) causes more overfitting, because the
model might try to fit patterns that don't generalize.

Higher target function complexity also increases overfitting, especially if the
model is powerful enough to memorize.

Relation to VC-Dimension

VC-dimension (Vapnik-Chervonenkis dimension) measures the capacity or
complexity of a model class — how well it can shatter data points.

The generalization bound derived using VC-dimension gives an upper bound on
how bad the test error could be, but it's often too pessimistic in practice.

So, even though theory allows for high worst-case errors, the actual test error
(E_{out}) is usually much better than the bound.

Remedies for Overfitting

1.

2.

Regularization:
Penalize complex models (e.g., L1 or L2 regularization). This constrains the
hypothesis space and discourages overfitting.

Validation:

Use a validation set to tune model complexity or hyperparameters. Early stopping
and cross-validation fall under this.

Regularization

Regularization is a process that converts the answer of a problem to a simpler one.

S '] \‘
\

In machine learning, especially in polynomial regression or neural networks, the model
has the freedom to fit many different functions (i.e., many “possible fits”) — especially
when it's highly flexible or complex.

e Without any restrictions, the model may fit the training data perfectly, even
modeling the noise. This is overfitting, and it leads to high variance — the model
performs well on training data but poorly on unseen data.

Regularization adds constraints to the hypothesis space, so:
¢ You're no longer letting the model pick any arbitrary function.
e It penalizes overly complex models (e.g., large weights or high-degree polynomials).

e This shrinks the solution space — meaning only a subset of simpler models are
considered.

e As aresult, the model becomes less sensitive to fluctuations in the data — lower
variance, better generalization.

This constrains weights to control model flexibility.

Mathematics behind this @

Legendre Polynomials

Orthogonal polynomials defined on [—1, 1].
¢ Used as basis functions in function approximation and regression.
¢ Help reduce feature correlation and improve numerical stability.

e Common in physics, numerical methods, and regularized machine learning.

e First few
Ly(z) =1,
Li(z) ==,
Ly(z) = 3(32% — 1),
etc.

Why Use Legendre Polynomials in Hypothesis Space?
1. Orthogonal Basis
® Reduces feature correlation
® Leads to more stable regression
2. Improved Numerical Stability
® Prevents issues with ill-conditioned matrices
s Better for high-degree polynomial fitting
3. Efficient Nonlinear Modeling
® Allows modeling complex functions using a linear combination of nonlinear bases
4. Better Control of Model Complexity
e Easy to truncate at desired degree (e.g., Ha, H1g)
® Supports both hard and soft regularization
5. Decorrelated Features
e Unlike z, 2%, 23, . . ., Legendre terms are uncorrelated — better generalization
6. Compatible with Regularization

e Works well with L2 (Ridge) regularization to manage bias-variance tradeoff

1. Legendre Polynomial-Based Hypothesis Space

Legendre polynomials Lq(m) are orthogonal (like orthagonal vectors) — this helps reduce correlation

among features.

We build our hypothesis as a linear combination:
Q
Ho(z) =Y W,Ly(x)
g=0

Let's define:
o Z =|1,Li(x), L2(x), ..., Ly(x)] - transformed input

* Training set becomes (Z,,, yy)

2. Linear Regression in Z-space
Now we want to find weights W that minimize training error:
1w 1
Em(W) = ﬁ HZ;(WTZn - 911)2 = N(ZW - Y)T(ZW - Y)
Unconstrained (basic) solution:

Wi = (272) ' Z"Y

This solution can overfit if () is large (high polynomial degree).

3. Hard Constraint: Hypothesis Reduction
If we want to go from hypothesis space H to Ho, we:
e SetW, =0forallg > 2

¢ This is a hard constraint: strictly limiting the model’s complexity.

4. Soft Constraint: Regularization

Instead of setting weights to zero, we penalize their magnitude:
Minimize error, subject to weight magnitude constraint:
minimize E;,(W) subject to WIW < C

This is equivalent to L2 regularization (Ridge):
. A r
min | E;, (W) + NW w

¢)\ regularization strength
e (" constraint limit

¢ These two are duals — adjusting one affects the other

5. Gradient Connection (Deriving the Equivalence)
From optimization theory:
* We want to minimize the regularized objective

* First-order condition (gradient = 0):

Equation (1):
VEm(Wrcg) o *Wrcg

Equation (2):

2\
VEz'n(I”Vng) = *WI’Vrcg
Equation (3):
2\
VEin(Wrrcg) + ercg =0

his shows that minimizing:
E (H/’) + A I}[FT W
o N

is equivalent to minimizing Ej,, (W) under the constraint WIw < C

Why Duality Matters

* Hard constraints (WX W < C) are easier to analyze theoretically, e.g., when applying VC-

dimension

® Soft constraints (penalizing WZIW) are easier to optimize in practice (solving regression

problems)

So we:
¢ Analyze with constraints

¢ Solve with regularization

Relation of C with W

7 B>

WK = ¢

“If C' = A T= We get mostly E;,,” “If C' T=- XA = W dominates”

e Small C' (tight constraint): high regularization, model is simple, fits less — low variance, high bias

e large C" low regularization, model is complex, can overfit

No choice gives perfect low error — it's a bias-variance tradeoff

Augmented Error function

(ZW - WT(ZW - Y) + AWTW]

2| -

A
Eaﬂ!}(W) = E’LTL(W) + (N)WTW =
In equation both part are quadratic hence we can solve it using quadratic programming

VEw(W)=0= Z"(ZW =Y + AW = 0)
Wieq = (ZTZ + X721 2TY
OpposedtoW;,, = (ZT)*ZTY

This implies

If A is large = Constraining Solution that is Making W,., = 0
More A makes the circle smaller and decreases chances of getting to W,
Makes the curve flatter(smother)

If X is small = Encapsulating W;,insideo fitthatismakingW,., = W,

=11 = 0.0001 A =001

o Data

~ b K/ N’/
Fit

over - Fitting - - > Regl - - > Regl’ ... - —— > ..under - Fitting

Choice of A is very Important. We have to choose A, validate it and choose out which is the
best.

Weight decay strategy

Instead of solving in one-shot (like with normal equation), we use gradient descent:

2\
W(t+1) = W(e) 1% | Ba(W(0) + 53700
Breaking it down:
2nA
Wit 1) =W |1 20 v EL W 0)

¢ 7 learning rate
e \:regularization strength
o Theterm W (t)[1 — - - -] is called weight decay

¢ This shrinks weights on each step — prevents overfitting

In neural networks, the weight penalty becomes:

QR) =D > > (W)

® Sum over all weights in all layers

¢ This is the same idea: penalize large weights to control model complexity

Weighted Regression

Instead of treating all weights equally, we weight the penalty per coefficient:
DWWy <C

* 7,: custom weight for each coefficient
e Ify, = 27 = penalize higher-order terms more — favors smooth, low-degree fits

* Ify, = 2% - allows higher-degree terms — can fit complex, noisy curves

Choice of C and A:

High-order polynomials capture noise.
We prefer < C to constrain weight magnitude and favor smoother, simpler models.
This aligns with Occam’s Razor — simpler explanations are better.

Selecting A is critical:
- Too large — underfit.
- Too small — overfit.

Choose A through validation or cross-validation.
Optimal A balances complexity and generalization.

	Overfitting Fundamentals

