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Approximation	VS	Generalization	

Let	Hypothesis	set	H	=	{h1,h2,h3,……..,	hn}	

Our	learning	algorithm	takes	a	hypothesis	from	H	so	that	it	can	approximate	properly	the	

unknown	target	function	f.		

The	 VC	 analysis	 showed	 that	 the	 choice	 of	 H	 needs	 to	 strike	 a	 balance	 between	

approximating	 for	 the	 training	 data	 and	 generalizing	 on	 new	 data.	 The	 ideal	H	 is	 a	
singleton	hypothesis	set	containing	only	the	target	function.	Since	we	do	not	know	the	

target	function,	we	resort	to	a	larger	model	hoping	that	it	will	contain	a	good	hypothesis,	

and	hoping	that	the	data	will	pin	down	that	hypothesis.	When	you	select	your	hypothesis	

set,	you	should	balance	these	two	conElicting	goals;	to	have	some	hypothesis	in	H	that	can	

approximate	f,	and	to	enable	the	data	to	zoom	in	on	the	right	hypothesis.	

The	VC	generalization	bound	is	one	way	to	look	at	this	trade-off.		

Case	1		

If	H	is	too	simple,	we	may	fail	to	approximate	f	well	and	end	up	with	a	large	in-sample	

error	term.		

Case	2	

If	H	is	too	complex,	we	may	fail	to	generalize	well	because	of	the	large	model	complexity	

term.		

There	is	another	way	to	look	at	the	approximation-generalization	trade-off	which	we	will	

present	in	this	section.	It	is	particularly	suited	for	squared	error	measures,	rather	than	

the	binary	error	used	in	the	VC	analysis.	The	new	way	provides	a	different	angle;	instead	

of	bounding	Eout	by	Ein	plus	a	penalty	term	Ω,	we	will	decompose	Eout	into	two	different	

error	terms.	

Bias	VS	Variance		

The	 bias-variance	 decomposition	 of	 out	 of	 sample	 error	 is	 based	 on	 squared	 error	

measures.	The	out-of-sample	error	is		



ED[Eout(gD)]	=	Ex	[(gD(x)	-	f(x))²]																						D	=	dataset	

The	hypothesis	g(x)	 is	obtained	by	 the	help	of	 training	dataset	D	 for	which	Ein(g)	was	

minimum.	

	

where:	

 

	

The	expected	value	of	the	out-of-sample	error	depends	on	both	the	variance	and	the	bias	

of	 the	 learning	 algorithm.	 If	 we	 choose	 a	 hypothesis	 set	 that	 generalizes	 well	 and	 is	

Elexible	enough	to	closely	approximate	the	true	function,	the	bias	tends	to	decrease,	as	the	

learned	hypothesis	can	better	capture	the	underlying	pattern.	However,	 increasing	the	

Elexibility	of	the	hypothesis	set	can	also	lead	to	higher	variance,	since	the	learned	function	

may	vary	signiEicantly	with	different	training	datasets.	This	trade-off	between	reducing	

bias	and	increasing	variance	is	known	as	the	bias-variance	trade-off.	

To	illustrate	let	us		consider	two	extreme	cases:	a	very	small	model	(with	one	hypothesis)	

and	a	very	large	one	with	all	hypothesis.	

																								 	 	 	 	 Very	 small	 model.	 Since	 there	 is	 only	 one	

hypothesis,	 both	 the	 average	 function	 �̅�	 and	

the	 Einal	 hypothesis	 gD	 will	 be	 the	 same,	 for	

any	data	set.	Thus,	variance=	0.	The	bias	will	

depend	 solely	 on	 how	 well	 this	 single	

hypothesis	 approximates	 the	 target	 f,	 and	

unless	 we	 are	 extremely	 lucky,	 we	 expect	 a	

large	bias.	 	 			

Variance	=	ED[(gD(x)- �̅�(x))2] and Bias(x) = (�̅�(x) – f(x))2	



Very	large	model.	The	target	 function	is	

in	 H.	 Different	 data	 sets	 will	 lead	 to	

different	hypotheses	that	agree	with	 f	on	

the	data	set,	and	are	spread	around	f	in	the	

shaded	region.	Thus,	bias	≈	0	because	�̅�			is	

likely	 to	 be	 close	 to	 f.	 The	 var	 is	 large	

(heuristically	 represented	 by	 the	 size	 of	

the	shaded	region	in	the	Eigure).	

EXAMPLE	 :	 Consider	 the	 target	 function	 f(x)=sin(πx)	 and	 a	 dataset	 of	 size	 N=2	 .We	

sample	x	uniformly	in	[−1,1]	and	Eit	the	data	using	one	of	the	following	two	models:	

H0:	h(x)	=	b	

H1:	h(x)	=	ax	+	b	

Þ For	H0	we	choose	the	constant	hypothesis	that	best	Eits	the	data	(the	horizontal	

line	at	 the	midpoint,	b	=	(𝑦1 + 𝑦2)/2	 )	For	H1	 ,	we	choose	 the	 line	 that	passes	

through	the	two	data	points	(x1,y1)	and	(x2,	y2)	Repeating	this	process	with	many	

data	sets,	we	can	estimate	the	bias	and	the	variance.	The	Eigures	which	follow	show	

the	resulting	Eits	on	the	same	(random)	data	sets	for	both	models.	

	

	

With	H1	the	learned	hypothesis	is	wilder	and	where	is	extensively	depending	on	the	data	

set	the	bias	variance	analysis	is	summarised	in	the	next	Eigure	

	



	

				For	H0	Bias	=	0.5,	Variance	=	0.25		 																	For	H1,	Bias	=	0.21,	Variance	=	1.69	

For	H1	the	average	hypothesis	�̅�	(red	line)	is	a	reasonable	Eit	fairly	small	bias	of	0.21.	

However	the	large	variability	lead	to	high	variance	of	1.69	resulting	in	a	large	expected	out	

of	sample	error	of	1.90.	With	the	simpler	model	H0	,	the	Eits	are	less	volatile	and	we	have	

signiEicantly	lower	variance	of	0.25,	as	indicated	by	the	shaded	region	.	However	the	

average	Eit	is	now	the	zero	function	resulting	in	a	higher	bias	of	0.50.	The	total	out	of	

sample	error	has	a	much	smaller	expected	value	of	0.75.	The	simpler	model	wins	by	

signiEicantly	decreasing	the	variance	at	the	expense	of	a	smaller	increase	in	bias.	

	

NOTE	:	

	

	

	

	

	

The	Learning	Curve			

The	learning	curves	summarize	the	behaviour	of	the	in-sample	and	out-of-sample	errors	
as	we	vary	the	size	of	the	training	set.	

	After	 learning	with	a	particular	data	 set	D	of	 size	N,	 the	 Einal	hypothesis	g(D)	has	 in-
sample	error	Ein	(g(D))	and	out-of-sample	error	Eout	(g(D))	both	of	which	depend	on	D.	As	
we	saw	in	the	bias-variance	analysis,	the	expectation	with	respect	to	all	data	sets	of	size	

1. It	is	not	only	about	how	best	your	hypothesis	is	performing	in	train	data,	as	same	

hypothesis	has	to	perform	well	in	out	of	sample	also	that	means	Eout	should	also	be	

minimum	

2. If	the	chosen	hypothesis	is	very	good	but	further	if	we	can’t	choose	best	hypothesis	

among	them	then	variance	will	become	high	which	will	ultimately	increase	Eout	.	

 



N	gives	the	expected	errors:	ED[Ein(g(D))]	and	ED[Eout(g(D))].	These	expected	errors	are	
functions	of	N,	and	are	called	the	learning	curves	of	the	model.	

	

	

	

In	the	VC	analysis,	Eout	was	expressed	as	the	sum	of	Ein	and	a	generalization	error	that	was	

bounded	by	Ω,	the	penalty	for	model	complexity.	In	the	bias-variance	analysis,	Eout	was	
expressed	as	the	sum	of	a	bias	and	a	variance.	The	following	learning	curves	illustrate	these	

two	approaches	side	by	side.	

	

	



From	the	above	VC	Analysis	we	can	infer	that	Eout	≤	Ein	+	Ω		and	by	looking	at	the	bias	

variance	analysis	we	can	infer	that	Eout	≤	Variance	+	Bias.	

	

	

Over=itting		

OverEitting	 literally	means	"Fitting	the	data	more	than	is	warranted."	The	main	case	of	

overEitting	is	when	you	pick	the	hypothesis	with	lower	Ein,	and	it	results	in	higher	Eout.	

This	means	that	Ein	alone	is	no	longer	a	good	guide	for	learning.	

Let's	 dig	 deeper	 to	 gain	 a	 better	 understanding	 of	 when	 overEitting	 occurs.	 We	 will	

illustrate	the	main	concepts	using	data	in	one-dimension	and	polynomial	regression.	

	

In	both	problems,	the	target	function	is	a	polynomial	and	the	data	set	D	contains	15	data	

points.	In	(a),	the	target	function	is	a	10th	order	polynomial	and	the	sampled	data	are	noisy	

(the	data	do	not	lie	on	the	target	function	curve).	In	(b)	,	the	target	function	is	a	50th	order	

polynomial	and	the	data	are	noiseless.		



	

 

The	best	2nd	and	10th	order	Eits	are	shown	in	above	Eigure,	and	the	in-sample	and	out-of-

sample	errors	are	given	in	the	following	table.	

10th order noisy target	 50th order noiseless target	

	 2nd	Order		 10th	Order											 2nd	Order		 10th	Order	

				Ein	 0.50	 0.034	 				Ein	 0.029	 10-5	

				Eout	 0.127	 9.00	 				Eout	 0.120	 7680	

			

What	the	learning	algorithm	sees	is	the	data,	not	the	target	function.	In	both	cases,	the	10th	

order	polynomial	heavily	overEits	the	data,	and	results	in	a	Einal	hypothesis	which	does	not	

resemble	the	target	function.	The	2nd	order	Eits	do	not	capture	the	full	nature	of	the	target	

function	either,	but	they	do	at	least	capture	its	general	trend,	resulting	in	signiEicantly	lower	

out-of-sample	error.	The	10th	order	Eits	have	lower	in-sample	error	and	higher	out-of-	sample	

error,	so	this	is	indeed	a	case	of	overEitting	that	results	in	bad	generalization.	

The	Eigure(a)	has	the	stochastic	noise	and	the	10th	order	polynomial	is	trying	to	Eit	the	data	

that	is	why	the	Eout	is	very	high	.	But	can	we	say	that	Eigure	(b)	has	no	noise	?	

Actually	the	10th	Order	polynomial	is	incapable	to	Eit	the	50th	Order	polynomial	as	a	result	

noise	is	present	and	this	noise	is	known	as	Deterministic	Noise.	

		



Expected	out-of-sample	error	:	

	

	


