
Summary Report: Fundamentals of Algorithm
Design and Machine Learning

Name: Soham Mittal
Roll No: 24BM6JP52
Professor: Aritra Hazra

24 - 28th March 2025

1 SVM Optimization Problem

The Support Vector Machine (SVM) optimization problem is formulated as:

min
1

2
W TW

subject to:
yi
(
W Txi + b

)
≥ 1, ∀(xi, yi)

where W represents the hyperplane coefficients, b is the bias, and (xi, yi) are
training data points.

Using the KKT theorem, the dual optimization problem becomes:

minLp =
1

2
W TW +

n∑
i=1

αi[1− yi(W
Txi + b)]

After taking derivatives and setting to zero:

L =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj(Zi, Zj)

1

2 Transformation

When linear classification is not possbile in input space X, data is trans-
formed into a higher-dimensional space Z using a mapping function ϕ(x).
This enables linear separability in Z-space. It can be transformed back again
using ϕ−1(x).

For example, transforming a 2D point X = (1, x1, x2)
T to:

Z = ϕ(X) = (1, x1, x2, x
2
1, x

2
2, x1x2)

3 Kernel Trick

The kernel trick allows computation of dot products in high-dimensional
spaces without explicitly computing the transformation ϕ(x). This is achieved
through kernel functions K(X,X ′) that directly compute the dot product
ϕ(X) · ϕ(X ′). For example:

K(X,X ′) = (1 + x1x
′
1 + x2x

′
2)

2

This corresponds to a 6-dimensional feature mapping:

ϕ(x) = (x2
1, x

2
2,
√
2x1x2,

√
2x1,

√
2x2, 1)

The optimization problem is reformulated as:

L =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(Xi, Xj)

Generalization bounds depend on the number of support vectors:

E[Eout] ≤
No. of support vectors

(N − 1)

where N = number of points

4 Radial Basis Function (RBF)

The RBF kernel maps data into an infinite-dimensional space:

K(x, x′) = e−
∥x−x′∥2

2σ2 = e−γ∥x−x′∥2

2

Where γ = 1
2σ2 controls the width of the Gaussian curve.

Using Taylor series expansion, the RBF kernel can be written as:

K(x, x′) = e−∥x∥2e−∥x′∥2
∞∑
k=0

(2)k(x · x′)k

k!

This kernel maps data into infinite-dimensional space and captures complex
patterns effectively. The RBF kernel’s flexibility makes it suitable for non-
linear decision boundaries.

5 Conditions for a Valid Kernel

5.1 Structural Consistency

The feature mappings ϕ(x) and ϕ(x′) must have the same structure for the
inner product to be well-defined.

5.2 Mercer’s Theorem

A symmetric function K(x, x′) is a valid kernel if:

• It is symmetric: K(x, x′) = K(x′, x)

• The kernel matrix is positive semi-definite:
∑N

i=1

∑N
j=1 cicjK(xi, xj) ≥

0 for any vector c ∈ RN

6 Dimensionality reduction

Dimensionality reduction aims to reduce the number of features in a dataset
while preserving essential information. It addresses computational efficiency
and the curse of dimensionality in machine learning. The transformation
maps data from D-dimensional space to d-dimensional space (1 ≤ d ≤ D).

3

7 Feature Selection

Feature selection identifies a subset of original features relevant to a task,
using metrics like Kullback-Leibler (KL) Divergence to measure information
gain.

7.1 Best Subset Selection: Forward

Forward selection starts with an empty feature set and iteratively adds fea-
tures that improve model performance based on KL Divergence. The com-
putational complexity is O(Dd).

7.2 Best Subset Selection: Backward

Backward selection begins with all features and iteratively removes less useful
ones using KL Divergence. Computational complexity is also O(Dd).

8 Feature Extraction

Feature extraction transforms original features into new ones, capturing crit-
ical information.

8.1 Principal Component Analysis (PCA)

PCA is an unsupervised method that identifies principal components to max-
imize variance in data. Steps include:

1. Centering data by subtracting the mean.

2. Computing the covariance matrix.

3. Performing eigen decomposition to find eigenvalues and eigenvectors.

4. Selecting top eigenvectors as principal components.

5. Projecting data onto principal components.

Limitations:

• Assumes linear relationships; may not capture nonlinear structures.

• Interpretation of principal components can be challenging.

4

8.2 Linear Discriminant Analysis (LDA)

LDA is a supervised method for dimensionality reduction in classification
problems. It maximizes separation between classes by projecting data onto
a vector w. Fisher’s linear discriminant is w that maximises:

J(w) =
(m1 −m2)

2

s21 + s22

wherem1,m2 are class means after projection, and s21, s
2
2 are scatter measures.

9 Performance Metrics

The evaluation of hypotheses involves understanding how accurately un-
known test data is classified, estimating performance metrics, and comparing
models based on these metrics.

9.1 Confusion Matrix

A confusion matrix is a tool used to evaluate the performance of a classi-
fication algorithm. For a 2-class classification, it helps in identifying true
positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN).

9.2 Metrics

- Accuracy: Measures the ratio of correctly predicted observations.

Accuracy =
|TP |+ |TN |

|TP |+ |TN |+ |FP |+ |FN |

- Precision: Indicates the proportion of positive predictions that are correct.

Precision =
|TP |

|TP |+ |FP |

- Recall: Also known as sensitivity or true positive rate.

Recall =
|TP |

|TP |+ |FN |

5

- F Score: Harmonic mean of Precision and Recall.

F1 = 2× Precision× Recall

Precision + Recall

- Weighted Accuracy: Averages out biases in metrics by using weights.

WeightedAccuracy =
w1 · |TP |+ w4 · |TN |

w1 · |TP |+ w2 · |FP |+ w3 · |FN |+ w4 · |TN |

10 Methods of Estimation

The effectiveness of evaluation methods depends on: Class distribution in
the dataset, Size of training and test sets, Cost of misclassification. Common
approaches are -

• Holdout Method: Typically uses 2/3 of data for training and 1/3 for
validation

• Random Sub-Sampling: Randomly selects instances for training
and testing sets

• Stratified Sampling: Maintains class distribution proportions when
sampling

• K-fold Cross-Validation: Divides the dataset into K equal parts,
using K-1 parts for training and 1 part for validation, repeated K times

11 Model Comparison

The Receiver Operating Characteristic (ROC) curve plots the True Positive
Rate (TPR) against the False Positive Rate (FPR) across different threshold
settings. AUC (Area Under Curve) gives predictive power:

• AUC = 1.0: Perfect classifier

• AUC = 0.5: No discriminative power (equivalent to random guessing)

• Higher AUC indicates better model performance

6

The optimal threshold depends on the specific application context and
the relative costs of false positives versus false negatives.

• Lower threshold: Increases TPR but also increases FPR (more sensi-
tive, less specific)

• Higher threshold: Decreases FPR but also decreases TPR (more spe-
cific, less sensitive)

12 Learning from Data

Machine learning algorithms aim to derive a hypothesis set H from training
data [(x1, y1), . . . , (xn, yn)]. The final hypothesis g(x) → ŷ minimizes total
error using methods like stochastic and batch gradient descent. Errors are
categorized as:

• In-sample error (Ein): Error rate on training data.

• Out-of-sample error (Eout): Error rate on unseen data.

12.1 Learning Framework

The learning process involves:

1. Unknown target function f(x) → y,

2. Training examples simulating f(x),

3. Hypothesis set H minimizing error,

4. Final hypothesis g(x) → ŷ,

5. Probability distributions for training/testing feasibility.

12.2 Error Estimation

There are 2 primary types of errors:

• In-sample error:

Ein(h) =
1

N

N∑
n=1

e(h(xn), f(xn))

7

• Out-of-sample error:

Eout(h) = Expx[e(h(xn), f(xn))]

Error measures can be:

• Squared error: the square of the difference between predicted and ac-
tual values

• Binary error: for classification problems (1 for mismatch, 0 for match)

12.3 Noise in Data

Noise represents randomness or irrelevant information in datasets. It trans-
forms deterministic targets into probabilistic distributions:

P (y|x) = p(x, y),

where noisy targets are modeled as:

f(x) = E(y|x) + (y − f(x))

The modified learning diagram incorporates noise effects.

13 Theoretical Considerations

The inductive principle assumes Eout(g) ≈ Ein(g). The probability of devia-
tion is bounded by:

P (|Eout − Ein| > ϵ) ≤ 2Me−2ϵ2N ,

where M is the number of hypotheses.

Model complexity affects generalization:

• Increased complexity reduces Ein.

• Overfitting occurs when generalization diminishes beyond a threshold
(dvc).

8

14 Goal of Learning

The goal of learning is to ensure that the output error Eout(g) approximates
the input error Ein(g), i.e., Eout(g) ≈ Ein(g). This is achieved when:

1. Eout(g) ≈ Ein(g).

2. Ein(g) ≈ 0.

As model complexity increases, Ein(g) decreases, but the difference Eout(g)−
Ein(g) increases. A trade-off is necessary to optimize learning.

15 Growth Function

The growth function mH(N) is defined as the maximum number of di-
chotomies (ways to classify points) possible in a given training space when
points are arranged in the worst possible configuration:

mH(N) = max
X1,X2,...XN∈X

|H(X1, X2, ..., XN)|

15.1 Growth Functions for Specific Cases

Examples of growth functions include:

1. 2D Perceptrons: The growth function satisfies mH(N) ≤ 2N .

2. Positive Rays: Dichotomies are given by mH(N) = N + 1.

3. Positive Intervals: Dichotomies are given by mH(N) =
(
N+1
2

)
+ 1.

4. Convex Sets: Dichotomies are always 2N .

15.2 Break Point

A break point k is the minimum size of a dataset for which mH(k) < 2k. In
other words, no dataset of size k can be shattered by hypothesis set H.

• For 2D perceptrons: k = 4.

• For positive rays: k = 2.

9

• For positive intervals: k = 3.

• For convex sets: No finite break point (k = ∞).

15.3 Polynomial Bound on Growth Function

mH(N) is bounded by a polynomial when a finite break point exists:

mH(N) ≤
k−1∑
i=0

(
N

i

)
This bound follows a pattern similar to Pascal’s triangle and can be

proven by mathematical induction.

Examples include:

1. Positive Rays (break point k = 2): mH(N) ≤ 1 +N

2. Positive Intervals (break point k = 3): mH(N) ≤ 1 +N + N(N−1)
2

3. 2D Perceptrons (break point k = 4): mH(N) ≤ 1 + N + N(N−1)
2

+
N(N−1)(N−2)

6

10

