CS60020: FADML

Lecture Scribe Notes

By: Siddhant Buriuly (24BM6JP51)

27th March 2025

Idea behind Theory of Generalization

You want a small E_{out} , but all you have access to during training is E_{in} . So, the key question is:

Can we guarantee that $E_{in} \approx E_{out}$?

When you train a model using a finite dataset, you're fitting it to specific examples. **Generalization theory** tries to connect that *training performance (in-sample error)* to the *true performance on all data (out-of-sample error)*.

Feasibility of Learning

The condition $E_{\text{out}}(h) \approx E_{\text{in}}(h)$ is satisfied if the following bound holds:

$$\mathbb{P}\left[|E_{\rm in}(h) - E_{\rm out}(q)| > \epsilon\right] \le 2Me^{-2\epsilon^2 N}$$

Here, M is the number of non-overlapping hypotheses, often infinite. Therefore, the **feasibility of learning** is directly related to the complexity of the hypothesis set.

```
Can we replace M with m_{\mathcal{H}}(N) ?
```

To make learning feasible, we reduce the hypothesis space from the infinite input space:

 $\mathcal{H}\{X\} \to \{+1, -1\}$ to $\mathcal{H}\{x_1, x_2, \dots, x_N\} \to \{+1, -1\}$

This allows us to count the number of possible **dichotomies** instead of infinite hypotheses.

Dichotomy

A **dichotomy** is a way of labeling a set of N input points with +1 or -1 using a hypothesis from a hypothesis set \mathcal{H} . Each hypothesis assigns a label to every point, and the pattern of these labels forms one dichotomy.

If a hypothesis set can realize all 2^N possible labelings on N points, we say it **shatters** that set. The number of dichotomies that \mathcal{H} can produce over N points is denoted as the **growth function** $m_{\mathcal{H}}(N)$. When $m_{\mathcal{H}}(N) < 2^N$, the hypothesis set's capacity is limited — and this limit connects to the concept of **VC dimension**.

Growth Function

The growth function $m_{\mathcal{H}}(N)$ is defined as the maximum number of dichotomies realizable by the hypothesis set \mathcal{H} on any N input points arranged in the worst possible configuration:

$$m_{\mathcal{H}}(N) = \max_{x_1, \dots, x_N \in X} |\mathcal{H}(x_1, \dots, x_N)|$$

Growth Function Examples

1. Positive Rays

Points are arranged along a 1D line. The classifier labels all points to the left of a threshold as -1, and to the right as +1. For N points:

$$m_{\mathcal{H}}(N) = N + 1$$

2. Positive Intervals

A contiguous interval is labeled +1 and the rest -1. Choosing two regions for interval endpoints gives $\binom{N+1}{2}$ dichotomies, plus one if both fall in the same region:

$$m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1$$

3. 2D Perceptrons

Points are separated by a line in 2D space:

- 1 point: 2 dichotomies
- 2 points: 4 dichotomies
- 3 points: 8 dichotomies
- 4 points: 14 dichotomies

4. Convex Sets

Convex sets always have 2^N dichotomies. Therefore, their break point is $k = \infty$.

Break Point

A break point k is the smallest number such that \mathcal{H} cannot shatter every set of k points:

$$m_{\mathcal{H}}(k) < 2^k$$

Examples:

- Positive Rays: k = 2
- Positive Intervals: k = 3
- 2D Perceptrons: k = 4
- Convex Sets: $k = \infty$

$m_{\mathcal{H}}(N)$ is a Polynomial Bounded

We want to replace M in Hoeffding's inequality with $m_{\mathcal{H}}(N)$, but only if it's bounded by a **polynomial**. It can be proved polynomial if:

 $m_{\mathcal{H}}(N) \leq \text{some quantity} \leq \text{some quantity} \leq \text{a polynomial}$

Let B(N,k) be the maximum number of dichotomies with N points and break point k. Since $m_{\mathcal{H}}(N) = B(N,k)$, we can prove that $m_{\mathcal{H}}(N)$ is linear if B(N,k) is linear.

Let's consider the example:

No. WK	Dichotomies	
XI	X2 XN-1	TN
+++	+11	+1
(+1	-11	-1
al :	: .	
-1	+1 +1	+1
(1-1	-1 1	+1
e) :-1	+11]	-1
Pli		
(-1	-11	-1
BY -1	+11	+1
') :	: :	:
L	•	· ·

 α is the number of rows in first set and β is the no. of rows in second set, which has the same dichotomies on the first N-1 points as the third set except that the Nth column is reverse signed.

Therefore, the total number of dichotomies of this dataset is given by:

$$B(N,k) = \alpha + 2\beta$$

Consider the first N-1 columns and the first α and β rows. These are shattered with break point k as we have just removed a unit from the data and the points still map to either +1 or -1 in X_N . So :

$$\alpha + \beta \le B(N - 1, k)$$

Considering only β rows and first N-1 columns, they have a break point of (k-1). So :

$$\beta \le B(N-1, k-1)$$

Combining:

$$B(N,k) \le (\alpha + \beta) + \beta \le B(N - 1, k) + B(N - 1, k - 1)$$

To prove that $m_{\mathcal{H}}(N)$ is less than, or equal to a polynomial we assume,

$$B(N,k) \le \sum_{i=0}^{k-1} \binom{N}{i}$$

This relation can be proved by math induction.

Example for the polynomial growth function:

2D Perceptrons: k = 3

$$B(N,k) \le \sum_{i=0}^{2} \binom{N}{i} = 1 + N + \frac{N(N-1)}{2}$$

Theory of generalization

From Hoeffding Inequality

$$\mathbb{P}\left[|E_{\rm in}(g) - E_{\rm out}(g)| > \epsilon\right] \le 2Me^{-2\epsilon^2 N}$$

To VC Inequality

$$\mathbb{P}\left[|E_{\rm in}(g) - E_{\rm out}(g)| > \epsilon\right] \le 4m_{\mathcal{H}}(2N)e^{-1/8\epsilon^2N}$$

(There is a long elaborated proof for this)

 $d_{\rm VC} = k - 1$

which tells the most number of points that can be shattered. Higher VC dimension means higher complexity of model, which means higher generalization.