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Idea behind Theory of Generalization
You want a small Eout, but all you have access to during training is Ein.
So, the key question is:
Can we guarantee that Ein ≈ Eout?

When you train a model using a finite dataset, you’re fitting it to specific examples.
Generalization theory tries to connect that training performance (in-sample error) to
the true performance on all data (out-of-sample error).

Feasibility of Learning
The condition Eout(h) ≈ Ein(h) is satisfied if the following bound holds:

P [|Ein(h) − Eout(g)| > ϵ] ≤ 2Me−2ϵ2N

Here, M is the number of non-overlapping hypotheses, often infinite. Therefore, the
feasibility of learning is directly related to the complexity of the hypothesis set.

Can we replace M with mH(N) ?

To make learning feasible, we reduce the hypothesis space from the infinite input
space:

H{X} → {+1, −1} to H{x1, x2, . . . , xN} → {+1, −1}

This allows us to count the number of possible dichotomies instead of infinite hy-
potheses.

Dichotomy
A dichotomy is a way of labeling a set of N input points with +1 or −1 using a
hypothesis from a hypothesis set H. Each hypothesis assigns a label to every point, and
the pattern of these labels forms one dichotomy.

If a hypothesis set can realize all 2N possible labelings on N points, we say it shatters
that set. The number of dichotomies that H can produce over N points is denoted as the
growth function mH(N). When mH(N) < 2N , the hypothesis set’s capacity is limited
— and this limit connects to the concept of VC dimension.
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Growth Function
The growth function mH(N) is defined as the maximum number of dichotomies re-
alizable by the hypothesis set H on any N input points arranged in the worst possible
configuration:

mH(N) = max
x1,...,xN ∈X

|H(x1, . . . , xN)|

Growth Function Examples

1. Positive Rays
Points are arranged along a 1D line. The classifier labels all points to the left of a
threshold as −1, and to the right as +1. For N points:

mH(N) = N + 1

2. Positive Intervals
A contiguous interval is labeled +1 and the rest −1. Choosing two regions for interval
endpoints gives

(
N+1

2

)
dichotomies, plus one if both fall in the same region:

mH(N) =
(

N + 1
2

)
+ 1

3. 2D Perceptrons

Points are separated by a line in 2D space:

• 1 point: 2 dichotomies
• 2 points: 4 dichotomies
• 3 points: 8 dichotomies
• 4 points: 14 dichotomies
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4. Convex Sets

Convex sets always have 2N dichotomies. Therefore, their break point is k = ∞.

Break Point
A break point k is the smallest number such that H cannot shatter every set of k points:

mH(k) < 2k

Examples:

• Positive Rays: k = 2
• Positive Intervals: k = 3
• 2D Perceptrons: k = 4
• Convex Sets: k = ∞

mH(N) is a Polynomial Bounded
We want to replace M in Hoeffding’s inequality with mH(N), but only if it’s bounded by
a polynomial. It can be proved polynomial if:

mH(N) ≤ some quantity ≤ some quantity ≤ a polynomial
Let B(N, k) be the maximum number of dichotomies with N points and break point

k. Since mH(N) = B(N, k), we can prove that mH(N) is linear if B(N, k) is linear.

Let’s consider the example:
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α is the number of rows in first set and β is the no. of rows in second set, which
has the same dichotomies on the first N − 1 points as the third set except that the Nth
column is reverse signed.

Therefore, the total number of dichotomies of this dataset is given by:

B(N, k) = α + 2β

Consider the first N −1 columns and the first α and β rows. These are shattered with
break point k as we have just removed a unit from the data and the points still map to
either +1or −1 in XN . So :

α + β ≤ B(N − 1, k)
Considering only β rows and first N − 1 columns, they have a break point of (k − 1).

So :

β ≤ B(N − 1, k − 1)
Combining:

B(N, k) ≤ (α + β) + β ≤ B(N − 1, k) + B(N − 1, k − 1)
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To prove that mH(N) is less than, or equal to a polynomial we assume,

B(N, k) ≤
k−1∑
i=0

(
N

i

)
This relation can be proved by math induction.

Example for the polynomial growth function:

2D Perceptrons: k = 3

B(N, k) ≤
2∑

i=0

(
N

i

)
= 1 + N + N(N − 1)
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Theory of generalization
From Hoeffding Inequality

P [|Ein(g) − Eout(g)| > ϵ] ≤ 2Me−2ϵ2N

To VC Inequality

P [|Ein(g) − Eout(g)| > ϵ] ≤ 4mH(2N)e−1/8ϵ2N

(There is a long elaborated proof for this)
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dVC = k − 1
which tells the most number of points that can be shattered. Higher VC dimension means
higher complexity of model, which means higher generalization.
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