
Dimensionality Reduction
CS60020 : Foundations of Algorithm Design and

Machine Learning
25th March 2025 Scribe - Sarthak Sablania

Contents

1 Introduction 2

2 Feature Selection 2
2.1 Best Subset Selection: Forward . . . . . . . . . . . . . . . . . . . 2
2.2 Best Subset Selection: Backward . . . . . . . . . . . . . . . . . . 3

3 Feature Extraction 3
3.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . 4

3.1.1 What are Principal Components? . . . . . . . . . . . . . . 4
3.1.2 How to Find the Principal Components? . . . . . . . . . . 5
3.1.3 Limitations of PCA . . . . . . . . . . . . . . . . . . . . . 7

3.2 Linear Discriminant Analysis (Optional) . . . . . . . . . . . . . . 7

1



Dimensionality Reduction

1 Introduction

Dimensionality Reduction aims to reduce the number of features in a dataset
while preserving important information. This process involves transforming
data from D dimensions {x1, x2, . . . , xD} to d dimensions {xk1, . . . , xkd}, where
1 ≤ d ≤ D.

It is essential for improving computational efficiency and addressing the curse
of dimensionality in machine learning and data analysis.

2 Feature Selection

Feature Selection focuses on identifying a subset of original features that are
most relevant for a given task. A key metric used for evaluating the relevance
of features is Kullback-Leibler (KL) Divergence. KL Divergence quantifies
how much one probability distribution P diverges from a second distribution Q.
It is given by:

DKL(P,Q) =
∑
i

(P (i) log
P (i)

Q(i)
+Q(i) log

Q(i)

P (i)
). (1)

In the context of feature selection, the divergence is used to compare the
distribution of the data with and without a feature, helping identify features
that contribute the most to the information gain.

The computational complexity of exhaustive search for feature selection is(
D
d

)
= O(Dd), making heuristic methods like forward and backward selection

necessary.

2.1 Best Subset Selection: Forward

Forward Selection starts with an empty set and iteratively adds features that
improve the model performance based on a chosen selection criterion, such as
KL Divergence. The process includes:

1. Initialization: Start with an empty feature set ∅.

2. Feature Evaluation: For each remaining feature xi, compute the change
in KL Divergence ∆DKL when adding xi to the current subset.

3. Feature Addition: Add the feature with the highest ∆DKL to the sub-
set.

4. Repeat until the desired subset size d is reached or no significant improve-
ment is observed.

The computational complexity for forward selection is O(Dd).
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Figure 1: PCA transforming high-dimensional data into a lower-dimensional
embedding. The principal components (PC1 and PC2) are chosen to maximize
variance along PC1 while minimizing residuals along PC2, enabling effective
dimensionality reduction.

2.2 Best Subset Selection: Backward

Backward Selection begins with the full set of features {x1, x2, . . . , xD} and
iteratively removes the least useful ones based on the same selection criterion,
KL Divergence. The process involves:

1. Initialization: Start with the full feature set {x1, x2, . . . , xD}.

2. Feature Evaluation: For each feature xi in the current subset, compute
the change in KL Divergence ∆DKL when removing xi.

3. Feature Removal: Remove the feature with the smallest ∆DKL from
the subset.

4. Repeat until the desired subset size d is reached or no significant improve-
ment is observed.

Similar to forward selection, the computational complexity for backward selec-
tion is O(Dd).

It is important to note that the solutions obtained via forward and back-
ward search may differ due to their differing strategies, despite using the same
selection criterion.

3 Feature Extraction

Feature extraction is the process of creating new features by transforming the
original ones, aiming to capture the most critical information in the data.
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3.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) refers to the process by which principal
components are computed, and the subsequent use of these components in un-
derstanding the data. PCA is an unsupervised approach, since it involves only
a set of features X1, X2, . . . , Xp, and no associated response Y . Apart from
producing derived variables for use in supervised learning problems, PCA also
serves as a tool for data visualization. It can also be used as a tool for data
imputation — that is, for filling in missing values in a data matrix.

We now discuss PCA in greater detail.

3.1.1 What are Principal Components?

PCA finds a low-dimensional representation of a data set that contains as much
as possible of the variation. The idea is that each of the n observations lives in p-
dimensional space, but not all of these dimensions are equally interesting. PCA
seeks a small number of dimensions that are as interesting as possible, where
the concept of interesting is measured by the amount that the observations
vary along each dimension. Each of the dimensions found by PCA is a linear
combination of the p features. We now explain the manner in which these
dimensions, or principal components, are found.

The first principal component of a set of features X1, X2, . . . , Xp is the nor-
malized linear combination of the features

Z1 = ϕ11X1 + ϕ21X2 + · · ·+ ϕp1Xp. (2)

that has the largest variance. By normalized, we mean that

p∑
j=1

ϕ2
j1 = 1. (3)

We refer to the elements ϕ11, . . . , ϕp1 as the loadings of the first principal com-
ponent; together, the loadings make up the principal component loading vector,

ϕ1 = (ϕ11, ϕ21, . . . , ϕp1)
T .

We constrain the loadings so that their sum of squares is equal to one, since
otherwise setting these elements to be arbitrarily large in absolute value could
result in an arbitrarily large variance.

Given an n×p data setX, how do we compute the first principal component?
Since we are only interested in variance, we assume that each of the variables
in X has been centered to have mean zero (that is, the column means of X are
zero). We then look for the linear combination of the sample feature values of
the form

zi1 = ϕ11xi1 + ϕ21xi2 + · · ·+ ϕp1xip subject to

p∑
j=1

ϕ2
j1 = 1. (4)
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In other words, the first principal component loading vector solves the optimiza-
tion problem

max
ϕ11,...,ϕp1

 1

n

n∑
i=1

 p∑
j=1

ϕj1xij

2
 subject to

p∑
j=1

ϕ2
j1 = 1. (5)

Since 1
n

∑n
i=1 xij = 0, the average of z11, . . . , zn1 will be zero as well. Hence

the objective that we are maximizing in (6) is just the sample variance of the
n values of zi1. We refer to z11, . . . , zn1 as the scores of the first principal com-
ponent. Problem (6) can be solved via an eigen decomposition of the variance-
covariance matrix of X, as we will see next.

There is a nice geometric interpretation of the first principal component. The
loading vector ϕ1 with elements ϕ11, ϕ21, . . . , ϕp1 defines a direction in feature
space along which the data vary the most. If we project the n data points
x1, . . . , xn onto this direction, the projected values are the principal component
scores z11, . . . , zn1 themselves.

After the first principal component Z1 of the features has been determined,
we can find the second principal component Z2. The second principal compo-
nent is the linear combination of X1, . . . , Xp that has maximal variance out of
all linear combinations that are uncorrelated with Z1. The second principal
component scores z12, z22, . . . , zn2 take the form

zi2 = ϕ12xi1 + ϕ22xi2 + · · ·+ ϕp2xip subject to

p∑
j=1

ϕ2
j1 = 1. (6)

where ϕ2 is the second principal component loading vector, with elements
ϕ12, ϕ22, . . . , ϕp2. It turns out that constraining Z2 to be uncorrelated with
Z1 is equivalent to constraining direction ϕ2 to be orthogonal (perpendicular)
to direction ϕ1. To find ϕ2, we solve a problem similar to (5) with ϕ2 replacing
ϕ1, and with the additional constraint that 2 is orthogonal to 1.

Once we have computed the principal components, we can plot them against
each other in order to produce low-dimensional views of the data. Geometrically,
this amounts to projecting the original data down onto the subspace spanned
by ϕ1, ϕ2, and ϕ3, and plotting the projected points.

An alternative interpretation of principal components can also be useful:
principal components provide low-dimensional linear surfaces that are closest
to the observations. We expand upon that interpretation here. The first prin-
cipal component loading vector has a very special property: it is the line in
p-dimensional space that is closest to the n observations (using average squared
Euclidean distance as a measure of closeness).

3.1.2 How to Find the Principal Components?

PCA aims to maximize the variance in the data by identifying principal com-
ponents. Suppose that:
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• N is the number of data points (samples),

• P is the original feature dimension,

• p is the number of principal components retained (p ≤ P ).

The step-by-step procedure to find them is as follows:

1. Calculate the Mean: Compute the mean

X̄ = (x̄1, x̄2, . . . , x̄P ).

2. Center the Data: For all xi, center the data as:

x′i ← xi − x̄i.

Or, alternatively, standardize (results will be different).

3. Covariance Matrix: Compute the covariance matrix:

Σ =

[
var(x1) cov(x1, x2)

cov(x1, x2) var(x2)

]
.

For P dimensions, this results in a P × P matrix.

4. Eigenvalues and Eigenvectors: Calculate eigenvalues λi and eigenvec-
tors ei of the covariance matrix. The eigenvector matrix E consists of
these eigenvectors as columns:

E =
[
e1 e2 . . . eP

]
.

5. Select Principal Components: The eigenvectors corresponding to the
largest eigenvalues form the principal components. For instance:

Ep =
[
e1 e2 . . . ep

]
.

where the top d components are retained.

6. Transform the Original Data: Let X be the data matrix, where each
row represents a data sample (after centering). The transformed data is
obtained by projecting X onto the selected eigenvectors:

Z = XEp, (7)

where X ∈ RN×P , Ep ∈ RP×p, Z ∈ RN×p, and Ep contains the top
p eigenvectors as columns.

The resulting Z represents the data in the new principal component space.
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3.1.3 Limitations of PCA

1. Assumes Linearity: PCA works best for data with linear relationships
and may not capture complex, nonlinear structures. Nonlinear techniques
like Kernel PCA or t-SNE might be more suitable in such cases.

2. Interpreting Principal Components is Difficult: The transformed
features are linear combinations of the original variables, making interpre-
tation challenging. Analyzing the loadings (coefficients of original features
in PCs) can help understand their contributions.

3.2 Linear Discriminant Analysis (Optional)

Linear discriminant analysis (LDA) is a supervised method for dimensionality
reduction for classification problems. We start with the case where there are
two classes, then generalize to K > 2 classes.

Given samples from two classes C1 and C2, we want to find the direction,
as defined by a vector w, such that when the data are projected onto w, the
examples from the two classes are as well separated as possible. As we saw
before,

z = wTx (8)

is the projection of x onto w and thus is a dimensionality reduction from d
to 1.

m1 and m1 are the means of samples from C1 before and after projection,
respectively. Note that m1 ∈ Rd and m1 ∈ R. We are given a sample X =
{xt, rt} such that rt = 1 if xt ∈ C1 and rt = 0 if xt ∈ C2.

m1 =

∑
t w

Txtrt∑
t r

t
= wTm1 (9)

m2 =

∑
t w

Txt(1− rt)∑
t(1− rt)

= wTm2 (10)

The scatter of samples from C1 and C2 after projection are

s21 =
∑
t

(wTxt −m1)
2rt (11)

s22 =
∑
t

(wTxt −m2)
2(1− rt) (12)

After projection, for the two classes to be well separated, we would like the
means to be as far apart as possible and the examples of classes be scattered in
as small a region as possible. So we want |m1 −m2| to be large and s21 + s22 to
be small (see figure 2). Fisher’s linear discriminant is w that maximizes

J(w) =
(m1 −m2)

2

s21 + s22
. (13)
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Figure 2: Two-dimensional, two-class data projected on w.
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