
Indian Institute of Technology, Kharagpur 

PGDBA Programme 

Department of Computer Science Engineering 

Fundamentals of Algorithm Design and Machine Learning 

Sachin Goyal: 24BM6JP46 

Instructor: Dr. Aritra Hazra 

Week 9 (20th Mar 2025) Scribe 

 

 

  



Until now, we have learned the following topics: 

• What is Learning 

• Can we learn it? (Is Learning Feasible?) 

• How to do it (using DT, Perceptron, ANN, etc.) 

Now, our focus will be on “How to do it well”.  

1. Linear Discriminant Analysis (LDA) 

Given a set of points (in binary classification problem as in following image), we can either 

use Decision tree, or Perceptron Linear classifier or Neural Network to classify the points. 

 

Now, which model to pick out of the 3 models, this question will be answered later on, 

(when we study evaluation metrics and validation set).  

But for now, under LDA, we will focus on that amongst all the possible lines (where each 

line depicts a linear discriminant model in the following image), which line is the best for 

dividing/generalizing the dataset.          



Any Linear discriminator can be represented as follows: 

          WTx + b1  =  0 

For a 2D plane,        w1x1 + w2x2 + b1  =  0 

For any new point Xn = ⟨a1, a2 ⟩,  

        w1a1 + w2a2 + b1  ≥  0     (Class +1) 

        w1a1 + w2a2 + b1  <  0     (Class -1) 

So, we can say for any Linear Discriminant,  

        

2.  Defining the Best Line: 

Intuitively, we can say that the Ideal linear discriminator (best line) will be the one that 

will be almost in the middle of both classes, but just saying middle seems very vague, so 

we will define formally what this middle actually means. 

By placing the line in the middle, we mean 

that we have to select that line (out of all the 

possible lines) for which the minimum 

distance among all the points is maximized. 

We know the perpendicular distance of a 

point from a plane is given by: 

di  =  
|w1xi1 + w2xi2 + b1|

√w1
2 + w2

2
 

So mathematically we can write the above condition as:  

           Max {min (di)}  = 

Here, our optimizer function includes both max and min, but we can simplify it further 

since the optimization depends only on the numerator.   

The values of w1, w2, and b can be chosen in such a way that for the closest point, the 

minimum distance (numerator) is set to 1. To achieve this, we will modify equation 1. 



yi(w1xi1 + w2xi2 + b1)  ≥  1 

This will ensure that the numerator for the closest point from the discriminator is 1, and 

for all the other points, it is greater than 1. 

Hence, the optimization problem simplifies to: 

                                                                          

     where ∥W∥ = WTW. 

 

3. Primal Optimization Problem 

Our Optimization function is     

      

 

 

We can also write it as   

    

    subject to constraint:  

 

• At any point in time, there exist two support points that define the optimal decision 

boundary. 

• This leads to the concept of the Support Vector Machine (SVM). 

 

4. Dual Problem Formulation  

• Since the above-mentioned Primal Objective function is an optimization problem 

subjected to inequality constraints, we can’t directly solve it in the usual way. 

• So, we will use Karush-Kuhn-Tucker (KKT) conditions and Lagrangian 

multipliers to convert it to form the dual problem. 

• The steps are as follows: 

Step 1: Construct the Lagrangian function  

• To handle the constraints, we will introduce Lagrange multipliers (𝛼i) ≥ 0 for 

each constraint and construct the Lagrangian function. 



Step 2:  Compute Partial Derivatives 

• In this step, we will find the gradient of Lagrangian function with respect to W 

and b and equate them to zero. 

 

  

 

 

Step 3:  Formulate the Dual Problem 

• In this step, we will substitute W back into the Lagrangian: 

 

After expanding and simplifying,  

 

Using the constraint, the term involving b vanishes. Thus, the dual problem 

simplifies to: 

 



• This dual problem form will allow us to solve the optimisation problem in terms 

of the Lagrange multipliers 𝛼i instead of the primal variables W and b. 

• This dual formulation can be solved by using a quadratic programming (QP) solver. 

• We can also represent the above-mentioned dual problem in matrix form. 

 

• Solving this dual problem will get us the values of 𝛼i for each data point. 

 

Step 4: Finding Weight (W) and bias (b) 

The Karush-Kuhn-Tucker (KKT) conditions will play a crucial role in explaining the 

behaviour of the Lagrange multipliers:  

KKT Condition - Complementary Slackness: 

The KKT condition states that for each training point, 

This entails: 

i. If 𝛼i > 0, then the corresponding constraint is active, i.e.,  

This means that these points lie exactly on the margin and are known as support 

vectors. 

ii. If a training point is not a support vector, then the constraint is not active. i.e., 

             which forces  𝛼i = 0. 

Thus, during the optimization, the algorithm adjusts the Lagrange multipliers in such a way 

that only the points that are "critical" to defining the margin (the support vectors) will end 

up with a positive 𝛼i  and all the other points will have 𝛼i = 0.  



We will use this information to find out W and b. 

• From the 2nd step, we have, 

• But we know now that only support vectors will have positive 𝛼i and all the rest 

will have 𝛼i = 0. So, we can restrict the sum to the support vector set S.  

• This means that only the Support Vectors contribute to the final decision 

boundary. 

• And bias can be found simply by taking any of the Support Vector (𝒙𝒊) for which, 

 

This will be the Weight and Bias for the best Linear Discriminator Model. 

 

5. Better Generalization with SVM in Higher dimensions 

 

• The Support Vector machine is also used when the data is not linearly separable in 

lower dimensions but separable (linearly) in higher dimensions.  

• Unlike other models (like the Perceptron, Decision-Tree, etc.) that rely on all training 

points, SVMs depend only on support vectors (points closest to the margin, for 

which 𝛼i  = 0). This makes SVMs resistant to the "curse of dimensionality" since the 



number of support vectors is often much smaller than the total number of data 

points. 

• And since we are considering only a few no. of points in higher dimensions to decide 

on the decision boundary, it significantly reduces the risk of overfitting. Hence, it can 

generalize the data better than most of the models. 

 

6. SVM Dual form with soft margin: 
 

• The above-mentioned derived equations for SVM are valid only when data is 

perfectly linearly separable. They are called Hard-Margin SVM. 

• But most of the time, data will not be perfectly linear separable; in that case, we use 

Soft-Margin SVM. In the soft-margin SVM, we allow some misclassification by 

introducing slack variables 𝛏𝒊.  

 

1. Primal Form of Soft-Margin SVM: 

 

 

    

        subject to constraint:  

 

 

2. Forming the Lagrangian function: 

 

3. Computing the Partial Derivatives with respect to W, b and ξ𝑖: 

 

 

  

 

• The partial derivation with respect to  ξ𝑖  gives the upper bound constraint on 𝛼i,  which 

is different from the hard-margin case. 



4. Forming the Dual Problem: 

 

• Substituting W back into the Lagrangian 

 

After Expanding and simplifying we get dual form, 

 

• This Soft Margin Dual form is the same as the Hard Margin SVM Dual form. The 

only   difference from the hard-margin case is the upper bound on 𝜶𝒊  (0 ≤ 𝛼i ≤ C), 

which will allow for some misclassifications. 

 

5.   Calculating Weight (W) and Bias (b): 

 

• Non-support vectors have 𝛼i
*= 0, so they do not affect the final decision boundary. 

• Only the Support vectors contribute to W (i.e., points with 0 < 𝛼i
* ≤ C) 

o If a point is on the margin, 0 < 𝛼i
* < C and ξ𝑖  = 0 

o If a point is within the margin, 0 < 𝛼i
* < C and 0 < ξ𝑖  < 1 

o If a point is misclassified, 𝛼i
*= C and ξ𝑖  > 1 

And bias can be found simply by taking any of the Support Vector (𝒙𝒊) for which, 


