

FUNDAMENTALS OF ALGORITHM
DESIGN AND MACHINE LEARNING

LECTURE SCRIBE NOTES

DATE: 7th JAN, 2025

REESHAV SAMANTA

24BM6JP45

PGDBA BATCH-10

TOPICS COVERED:

 Exact Time Analysis
 Overview
 Examples

 AsymptoƟc Analysis
 Overview
 Big-Oh, Big-Omega, Big-Theta
 FuncƟon class comparison
 Examples

 Recursive RelaƟons Examples

1

1. Exact Time Analysis

Overview
Exact Ɵme analysis involves determining the precise number of fundamental operaƟons
executed by an algorithm, rather than just esƟmaƟng asymptoƟcally. It provides a detailed
count of operaƟons like comparisons, iteraƟons, recursive calls, and variable assignments,
helping to accurately evaluate the algorithm’s efficiency. It helps us to get an idea about the
asymptoƟc Ɵme bounds.

Examples
1.

sum(A,n){
 s = 0
 for i = 0 to n
 s = s + A[i]
 return s
}

This program calculates the sum of all elements in the array A of size n.

In the soluƟon we will see how many Ɵmes each line has run.

sum(A,n){
 s = 0 Runs 1 time
 for i = 0 to n Runs (n+1) times
 s = s + A[i] Runs n times
 return s Runs 1 time
}

 The assignment s = 0 and return statement runs once each.
 for loop runs for (n+1) Ɵmes as there are n+1 comparisons. The present value of i is

compared with 0 through n. The loop stops when i = n.
 The operaƟon inside the for loop runs n Ɵmes as there are n iteraƟons.

Exact Ɵme = (1 + (n+1) + n + 1) = 2n + 3

Time Complexity = O(n)

2.
add(A,B,n){
 for i = 0 to n
 {
 for j = 0 to n
 c[i,j] = A[i,j] + B[i,j]
 }
}

This program calculates the sum of two n x n matrices A and B.

2

add(A,B,n){
 for i = 0 to n Runs n+1 times
 for j = 0 to n Runs n(n+1) times
 c[i,j] = A[i,j] + B[i,j] Runs n*n times
}

 By the same logic in Ex. 1, the first loop runs (n+1) Ɵmes and everything within that
runs n Ɵmes, making it n(n+1) comparisons in the second loop.

 The final addiƟon operaƟon runs n × n Ɵmes due to two nested loops.

Exact Ɵme = n2 + n(n+1) + (n+1) = 2n2 + 2n + 1

Time Complexity = O(n2)

3.
mul(A,B,n){
 for i = 0 to n Runs n+1 times
 for j = 0 to n Runs n(n+1) times
 c[i,j] = 0 Runs n*n times
 for k = 0 to n Runs n*n(n+1) times
 c[i,j] = c[i,j] + A[i,k]*B[k,j] Runs n*n*n times
 }

This program calculates the product of two n × n matrices A and B.

 There are three nested loops running n Ɵmes each. This hints that the Ɵme
complexity will be O(n3).

Exact Ɵme = n3 + n2(n+1) + n2 + n(n+1) + (n+1) = n3 + 3n2 + 2n + 1

Time Complexity = O(n3)

4.
for i = 0 to n Runs n+1 times
 pf(“IITKGP”) Runs n times

This program prints “IITKGP” n number of Ɵmes.

Exact Ɵme = n + (n+1) = 2n + 1

Time Complexity = O(n)

5.

for i = 0 to n, step = 2 Runs

ଶ
+ 1 times

 pf(“IITKGP”) Runs

ଶ
 times

This program prints “IITKGP” with a step of 2. Thus making it n/2 no. of Ɵmes.

Exact Ɵme =
ଶ

+ (

ଶ
+ 1) = n + 1

Time Complexity = O(n)

3

6.
p = 0
for (i = 1, p ≤ n, i++)
 p = p + i

This program increments the variable p by i, which is incremental in nature (i).

 The stopping condiƟon is given as p > n.

i p
1 1

2 1+2
3 1+2+3
… …
k 1+2+..+k

p > n
1 + 2 + … + k > n
(ାଵ)

ଶ
 > n

kଶ + k > 2n
k2 > n
k > √𝑛

Time Complexity = O(√𝑛)

7.
for (i = 1, i < n, i = i*2)
 pf(“IITKGP”)

The program keeps prinƟng 'IITKGP' for each iteraƟon of the loop, with the value of i
doubling in each step unƟl it becomes greater than or equal to n.

 The stopping condiƟon is given as i > n.
i = 1 x 2 x 2 x…x 2 ≥ n
2k ≥ n
k ≥ log2 n

 The for loop runs for [log2 n] no. of Ɵmes. Here, [.] denotes GIF.

Time Complexity = O(log2 n)

8.
for (i = n, i ≥ 1, i = i/2)
 pf(“IITKGP”)

Let us say that the program runs for k no. of iteraƟons.

 The stopping condiƟon is given as i < 1.

4

i = n × ଵ
ଶ

× ଵ
ଶ
 × ଵ

ଶ
× … × ଵ

ଶ
 =

ଶೖ < 1

2 > 𝑛
k > log2 n

Time Complexity = O(log2 n)

9.
for (i = 0, i < n, i = i++)
 for(j = 0, j < i, j++)
 pf(“IITKGP”)

 No. of iteraƟons is given as:

i j #iteraƟons
1 0 1
2 0
 1 2

3 0
 1
 2 3

… … …
n n

No. of iteraƟons = 1+2+3+..+n = (ାଵ)

ଶ

Exact Ɵme = (ାଵ)

ଶ

Time Complexity = O(n2)

10.

for (i = 0, i*i < n, i = i++)
 pf(“IITKGP”)

 Stopping condiƟon is given as i2 ≥ n, or i ≥ √𝑛
 No. of iteraƟons = [√𝑛], where [.] denotes GIF

Time complexity = O(√𝑛)

11.
p = 0
for(i = 1, i < n, i = i*2)
 p++ Runs p = [log2n] times

for(j = 1, j < p, j = j*2)
 pf(“ ”) Runs log2p = log2(log2n) times

 The loops are NOT nested and dependant only in terms of the value of p.

5

 We will use the concept used in Q.7. and we will see that p = log2n.
 The second loop similarly runs for log2p Ɵmes.

Exact Ɵme = 1 + (p + 1) + p + (log2p + 1) + log2p = 1 + (log2n + 1) + log2n + (log2(log2n) + 1) +
log2(log2n)

Time Complexity = O(log2n)

12.
for(i = 0, i < n, i++) Runs n+1 times
 for(j = 1, j < n, j = j*2) Runs n*([log2n]+1) times
 pf(“ ”) Runs n*[log2n] times

 This involves two nested loops, the outer having arithmeƟc increments, and the

inner having geometric increments, doubling the value of j in each iteraƟon unƟl it is
greater than or equal to n.

Exact Ɵme = 2nlog2n + 2n + 1

Time Complexity = O(nlog2n)

13.
a = 1 Runs 1 time
while(a < b) Runs [log2b]+1 times
 pf(“IITKGP”) Runs [log2b] times
 a = a * 2 Runs [log2b] times

This program prints “IITKGP” Ɵll the value of a is less than b.

 Suppose there are k iteraƟons in the while loop.
 Stopping condiƟon:

a = 1 x 2 x 2 x …. x 2 (k Ɵmes) = 2k ≥ b
k ≥ log2b

Exact Ɵme = 3log2b + 2

Time Complexity = O(log2b)

SUMMARY

 for(i = 0, i < n, i++) O(n)

 for(i = 0, i < n, i = i + 2) O(n)

 for(i = n, i > 1, i--) O(n)

 for(i = 1, i < n, i = i*2) O(log2n)

 for(i = 1, i < n, i = i*3) O(log3n)

 for(i = n, i > 1, i = i/2) O(log2n)

6

2. AsymptoƟc Analysis

Overview
AsymptoƟc Analysis helps in evaluaƟng the efficiency of algorithms by analysing their
growth rates as the input size n approaches infinity. The three key notaƟons are:

1. Big-Oh (O): Upper Bound

2. Big-Omega (Ω): Lower Bound

3. Big-Theta (Θ): Tight/Average Bound

Big-Oh (O) – Upper Bound
DefiniƟon: For a given funcƟon g(n), O(g(n)) denotes the set of funcƟons f(n) saƟsfying
the following property:

There exist posiƟve constants c and 𝑛 such that:

0 ≤ 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛) for all 𝑛 ≥ 𝑛

Represents the upper bound of a funcƟon f(n)

Example

4n2 + 2n + 1 ≤ 𝑐 ⋅ (4n2 + 2n2 + n2)

f(n) ≤ n2

f(n) = O(n2)

Big-Omega (Ω) – Lower Bound
DefiniƟon: For a given funcƟon g(n), Ω(g(n)) denotes the set of funcƟons f(n) saƟsfying
the following property:

There exist posiƟve constants c and 𝑛 such that:

0 ≤ 𝑐 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) for all 𝑛 ≥ 𝑛

Represents the lower bound of a funcƟon f(n)

Example

4n + 3 ≥ n

f(n) ≥ n

f(n) = Ω(n)

7

Big-Theta (Θ) – Lower Bound
DefiniƟon: For a given funcƟon g(n), Θ(g(n)) denotes the set of funcƟons f(n) saƟsfying
the following property:

There exist posiƟve constants c1, c2 and 𝑛 such that:

0 ≤ 𝑐ଵ𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐ଶ𝑔(𝑛) for all 𝑛 > 𝑛

Represents the Ɵght (exact) bound of a funcƟon f(n)

Example

n2 ≤ 2n2 + 3n + 4 ≤ 2n2 + 3n2 + 4n2

n2 ≤ f(n) ≤ 9n2

f(n) = Θ(n2)

NOTE: If f(n) = O(g(n)) and f(n) = Ω(g(n)), then f(n) = Θ(g(n)) provided g(n) is the same in
both O(g(n)) and Ω(g(n)).

FuncƟon Classes for AsymptoƟc Analysis
FuncƟon classes in asymptoƟc analysis are used to categorize funcƟons based on their
growth rates as the input size n increases. These classes help in understanding the
relaƟve efficiency of algorithms by comparing their Ɵme or space complexiƟes.
Commonly analysed classes include constant (O(1)), logarithmic (O(log2n)), linear (O(n)),
quadraƟc (O(n2)), exponenƟal (O(2n)), and factorial (O(n!)) complexiƟes. Understanding
these growth paƩerns allows us to predict algorithm behaviour for large input sizes and
choose the most efficient soluƟons.

𝟏 < 𝐥𝐨𝐠𝟐 𝒏 < √𝒏 < 𝒏 < 𝒏 𝐥𝐨𝐠 𝒏 < 𝒏𝟐 < 𝒏𝟑 < ⋯ < 𝟐𝒏 < 𝟑𝒏 < ⋯ < 𝒏𝒏

This sequence represents the increasing order of growth rates for common funcƟons
used in asymptoƟc analysis, from constant to exponenƟal and beyond.

Examples
1. f(n) = n2logn + n

Checking for upper bound
n2logn + n ≤ 𝑐 ⋅ (n2logn + n2logn)
n2logn + n ≤ 2𝑐 ⋅ (n2logn)
f(n) = O(n2logn)

Checking for lower bound
n2logn + n ≥ 1 ⋅ (n2logn)
f(n) = Ω(n2logn)

8

Checking for Ɵght bound
n2logn ≤ n2logn + n ≤ 2𝑐 ⋅ (n2logn)
f(n) = Θ(n2logn)

2. f(n) = log(n!)

log(1.1.1…1) ≤ log(1.2.3…n) ≤ log(n.n….n)
1 ≤ log(n!) ≤ nlogn

Upper Bound
f(n) = O(nlogn)

Lower Bound
f(n) = Ω(1)

3. f(n) = n!
Checking for upper bound
n! = 1.2.3…n ≤ n.n….n
n! ≤ nn
f(n) ≤ nn

f(n) = O(nn)

Checking for lower bound
n! = 1.2.3…n ≥ 1.1…1
n! ≥ 1
f(n) ≥ 1
f(n) = Ω(1)

4. 𝑓(N) = 𝑙𝑜𝑔 ቀ ே
ே/ଶ

ቁ

Using SƟrling’s ApproximaƟon,

𝑙𝑜𝑔 ൬
𝑁

𝑁/2൰ ≈ 𝑁 𝑙𝑜𝑔 2 −
1

2
𝑙𝑜𝑔 𝑁 + 𝑐𝑜𝑛𝑠𝑡. = 𝑁 𝑙𝑜𝑔 2 + 𝑙𝑜𝑔൫1/√N൯

We know that 𝑙𝑜𝑔൫1/√N൯ grows much slower than 𝑁 𝑙𝑜𝑔 2

f(N) = O(N)

9

Examples on recursive relaƟons
1.

void ABC(int n)
 if(n > 0) Runs 1 time
 pf(“ ”) Runs 1 time
 ABC(n-1) Runs T(n-1) times

The program runs T(n) no. of iteraƟons (steps)

T(n) = T(n-1) + 2 = T(n-1) + O(1)

So, T(n) is given as:

WriƟng the recursive relaƟon:

T(n) = T(n-1) + 1

T(n-1) = T(n-2) + 1

…

T(2) = T(1) + 1

T(1) = T(0) + 1

Summing all the above equaƟons:

T(n) = T(0) + n

T(n) = n + 1

Time Complexity = O(n)

2.
void ABC(int n)
 if(n > 0) Runs 1 time
 for(i = 0, i < n, i++) Runs (n+1) times
 pf(“ ”) Runs n times
 ABC(n-1) Runs T(n-1) times

The program runs T(n) no. of iteraƟons (steps)

T(n) = T(n-1) + 2n + 2 = T(n-1) + O(n)

So, T(n) is given as:

10

WriƟng the recursive relaƟon:

T(n) = T(n-1) + n

T(n-1) = T(n-2) + n-1

…

T(2) = T(1) + 2

T(1) = T(0) + 1

Summing all the above equaƟons:

T(n) = T(0) +
(ାଵ)

ଶ

T(n) =
మାାଶ

ଶ

Time Complexity = O(n2)

3.
ABC(int n)
 if(n > 0) Runs 1 time
 pf(“ ”) Runs 1 time
 ABC(n-1) Runs T(n-1) times
 ABC(n-1) Runs T(n-1) time

The program runs T(n) no. of iteraƟons (steps)

T(n) = 2T(n-1) + 2 = 2T(n-1) + O(1)

So, T(n) is given as:

WriƟng the recursive relaƟon:

T(n) = 2T(n-1) + 1

2T(n-1) = 22T(n-2) + 2

22T(n-2) = 23T(n-3) + 22

…

2n-2T(2) = 2n-1T(1) + 2n-2

2n-1T(1) = 2nT(0) + 2n-1

Summing all the above equaƟons:

11

T(n) = 2nT(0) + (1 + 2 + 22 + … + 2n-1)

T(n) = 2 + (2 − 1) = 2ାଵ − 1

Time Complexity = O(2)

4.
ABC(int n)
 if(n > 1) Runs 1 time
 pf(“ ”) Runs 1 time
 ABC(n/2) Runs T(n/2) time

The program runs T(n) no. of iteraƟons (steps)

T(n) = T(n/2) + 2 = T(n/2) + O(1)

So, T(n) is given as:

WriƟng the recursive relaƟon:

T(n) = T(n/2) + 1

T(n/2) = T(n/22) + 1

…

T(n/2k-2) = T(n/2k-1) + 1

T(n/2k-1) = T(n/2k) + 1

Summing all the above equaƟons:

T(n) = T(n/2k) + 𝑘

The recurrence reaches base case when

ଶೖ
= 1 or k = log2n

Thus, T(n) = T(1) + log2n

T(n) = 1 + log2n

Time Complexity = O(log2n)

5. Merge Sort

WriƟng the recursive relaƟon:

T(n) = 2T(n/2) + n

12

2T(n/2) = 22T(n/22) + n

…

2k-2T(n/2k-2) = 2k-1T(n/2k-1) + n

2k-1T(n/2k-1) = 2kT(n/2k) + n

Summing all the above equaƟons:

T(n) = 2kT(n/2k) + 𝑛𝑘

The recurrence reaches base case when

ଶೖ = 1 or k = log2n

T(n) = n + nlog2n

Time Complexity = O(nlog2n)

6.

WriƟng the recursive relaƟon:

T(n) = T(n/2) + n

T(n/2) = T(n/22) + n/2

…

T(n/2k-2) = T(n/2k-1) + n/2k-2

T(n/2k-1) = T(n/2k) + n/2k-1

Summing all the above equaƟons:

T(n) = 2kT(n/2k) + 𝑛 ⋅
ଵିቀ

భ

మ
ቁ

ೖ

ଵି
భ

మ

The recurrence reaches base case when

ଶೖ = 1 or k = log2n

T(n) = nT(1) + n(2 – 21-k) = 3n - ଶ

ଶೖ = 3n – 2

Time Complexity = O(n)

7.
void ABC(int n)
 if (n > 0) Runs 1 time
 for(i = 1, i < n, i = i*2) Runs [log2n]+1 times
 pf(“ ”) Runs [log2n] times
 ABC(n-1) Runs T(n-1)

The program runs T(n) no. of iteraƟons (steps)

13

T(n) = T(n-1) + 2log2n + 2 = T(n-1) + O(log2n)

So, T(n) is given as:

WriƟng the recursive relaƟon:

T(n) = T(n-1) + log2n

T(n-1) = T(n-2) + log2(n-1)

…

T(2) = T(1) + log22

T(1) = T(0) + log21

Summing all the above equaƟons:

T(n) = T(0) + log21 + log22 + log23 + log24 + … + log2(n-1) + log2n

T(n) = 1 + log2(n!)

Time Complexity = O(nlogn)

[Check pg.8 Ex.2. for log2(n!) = O(nlogn)]

