FUNDAMENTALS OF ALGORITHM
DESIGN AND MACHINE LEARNING

LECTURE SCRIBE NOTES
DATE: 7t JAN, 2025

TOPICS COVERED:

+* Exact Time Analysis
= Qverview
= Examples
+» Asymptotic Analysis
= Qverview
= Big-Oh, Big-Omega, Big-Theta
= Function class comparison
= Examples
+* Recursive Relations Examples

REESHAV SAMANTA
24BM6JP45
PGDBA BATCH-10

1. Exact Time Analysis

Overview

Exact time analysis involves determining the precise number of fundamental operations
executed by an algorithm, rather than just estimating asymptotically. It provides a detailed
count of operations like comparisons, iterations, recursive calls, and variable assignments,
helping to accurately evaluate the algorithm’s efficiency. It helps us to get an idea about the
asymptotic time bounds.

Examples
1.

sum(A,n){
s =0
for i = 0 to n

s =5s + A[i]

return s

3

This program calculates the sum of all elements in the array A of size n.

In the solution we will see how many times each line has run.

sum(A,n){
s =0 Runs 1 time
for i = 0 to n Runs (n+l) times
s =5s + A[i] Runs n times
return s Runs 1 time
Iy

e The assignment s = 0 and return statement runs once each.

e for loop runs for (n+1) times as there are n+1 comparisons. The present value of i is
compared with 0 through n. The loop stops when i = n.

e The operation inside the for loop runs n times as there are n iterations.

Exacttime=(1+(n+1)+n+1)=2n+3
Time Complexity = O(n)
2.

add(A,B,n) {
for i = 0 to n

for j =0 to n
C[1!J] = A[1!J] + B[15J]

}

This program calculates the sum of two n x n matrices A and B.

add(A,B,n){
for i = 0 to n Runs n+l1 times
for j =0 to n Runs n(n+l) times
c[i,j] = A[i,j] + B[i,j] Runs n*n times

e By the same logic in Ex. 1, the first loop runs (n+1) times and everything within that
runs n times, making it n(n+1) comparisons in the second loop.
e The final addition operation runs n X n times due to two nested loops.

Exact time =n?+ n(n+1) + (n+1) =2n?+2n+1

Time Complexity = O(n?)

3.
mul(A,B,n){
for i = 0 to n Runs n+1 times
for j =0 ton Runs n(n+1) times
c[i,j] =0 Runs n*n times
for k = 0 to n Runs n*n(n+1l) times
c[i,j] = cl[i,j] + A[i,kI*B[k,j] Runs n*n*n times

This program calculates the product of two n X n matrices A and B.

e There are three nested loops running n times each. This hints that the time
complexity will be O(n3).

Exact time = n3+ n%(n+1) + n>+ n(n+1) + (n+1) =n®+3n?2+2n+1
Time Complexity = O(n3)
4.

for i = 0 to n Runs n+1 times
pf(“IITKGP”) Runs n times

This program prints “llITKGP” n number of times.
Exacttime=n+(n+1)=2n+1
Time Complexity = O(n)

5.

for i =0 to n, step = 2 Runs 24—1 times
pf(“IITKGP”) Runs % times

This program prints “lITKGP” with a step of 2. Thus making it n/2 no. of times.
Exacttime=g+ (§+ D=n+1

Time Complexity = O(n)

p=20
for (i =1, p < n, i++)
p=p+1

This program increments the variable p by i, which is incremental in nature (i).

e The stopping condition is given as p > n.

/ p
1 1
2 1+2
3 1+2+43
k 1+2+..+k
p>n
1+2+...+k>n
k?+ k> 2n
k’>n

k>+/n
Time Complexity = O(v/n)
7.

for (i =1, i <n, i =1%2)
pf(“IITKGP”)

The program keeps printing 'lITKGP' for each iteration of the loop, with the value of i
doubling in each step until it becomes greater than or equal to n.

e The stopping condition is given as i >n.
i=1x2x2x.X22n
2k>n
k >logzn
e The forloop runs for [logz n] no. of times. Here, [.] denotes GIF.

Time Complexity = O(logz n)
8.

for (i =n, i 21, 1 =1/2)
pf(“IITKGP”)

Let us say that the program runs for k no. of iterations.

e The stopping condition is given as i < 1.

1 n
X—=—k<1
2 2

, 1.1 _1
f=nX=X=X=X..
2 2 2
2k >n
k>logzn
Time Complexity = O(log2 n)

9.

for (i 0, i <n, i T4++)
for(j = 0, j < i, j++)

pf(“IITKGP”)

e No. of iterations is given as:

i j #iterations
1 0 1
2 0
1 2
3 0
1
2 3
n n

No. of iterations = 1+2+3+..+n = 240

Exact time = nnt1)

Time Complexity = O(n?)

10

for (i =0, i*i < n, i
pf(“IITKGP”)

T+4)

e Stopping condition is given asi?>n, ori > x/r_l
e No. of iterations = [x/r_l], where [.] denotes GIF

Time complexity = O(v/n)

11.
p=20
for(i =1, i <n, i=1%2)
p++ Runs p = [log;n] times
for(3 =1, j <p, j =3*2) .
pf(* ™) Runs Tog:p = log.(log:n) times

e The loops are NOT nested and dependant only in terms of the value of p.

o We will use the concept used in Q.7. and we will see that p = logzn.
e The second loop similarly runs for logzp times.

Exacttime=1+(p+1)+p+ (logzp + 1) + logop =1 + (logzan + 1) + logan + (logz(logan) + 1) +
logz(logzn)

Time Complexity = O(logan)

12.
for(i =0, i < n, i++) Runs n+l1 times
for(j =1, j <n, j =3j%2) Runs n*([log.n]+1) times
pfc“ ™) Runs n*[log.n] times

e This involves two nested loops, the outer having arithmetic increments, and the
inner having geometric increments, doubling the value of j in each iteration until it is
greater than or equal to n.

Exact time = 2nlogon +2n+ 1

Time Complexity = O(nlogzn)

13.
a=1 Runs 1 time
while(a < b) Runs [log;b]+1 times
pf(“IITKGP”) Runs [log:b] times
a=a?%*?2 Runs [log;b] times

This program prints “lITKGP” till the value of a is less than b.

e Suppose there are k iterations in the while loop.
e Stopping condition:

A=1X2X2X ... X2 (ktimes) = 2K> b

k > logzb

Exact time = 3logzb + 2

Time Complexity = O(logzb)

SUMMARY
e for(i =0, i <n, i++) o(n)
e for(i 0, i<n, i=1+2) o(n)
e for(i =n, i >1, i--) o(n)
o for(i =1, i <n, i =1%2) 0(logzn)
e for(i =1, i <n, i = 1%*3) 0(logsn)
e for(i =n, i >1, 1 =1/2) 0(logzn)

2. Asymptotic Analysis

Overview

Asymptotic Analysis helps in evaluating the efficiency of algorithms by analysing their
growth rates as the input size n approaches infinity. The three key notations are:

1. Big-Oh (0O): Upper Bound
2. Big-Omega (Q): Lower Bound

3. Big-Theta (0): Tight/Average Bound

Big-Oh (O) — Upper Bound

Definition: For a given function g(n), O(g(n)) denotes the set of functions f(n) satisfying
the following property:

There exist positive constants ¢ and n, such that:
0<f(n)<c-gn)foralln >n,

Represents the upper bound of a function f(n)
Example

4n’+2n+1<c- (4n°+2n° +n?)

f(n) < n?

f(n) = O(n?)

Big-Omega (Q) — Lower Bound

Definition: For a given function g(n), Q(g(n)) denotes the set of functions f(n) satisfying
the following property:

There exist positive constants ¢ and n, such that:
0<c-gn)<f(n)foralln = n,

Represents the lower bound of a function f(n)
Example

4n+32n

f(n)=n

fln) =Q(n)

Big-Theta (©) — Lower Bound

Definition: For a given function g(n), ©(g(n)) denotes the set of functions f(n) satisfying
the following property:

There exist positive constants c;, ¢2 and ng such that:

0<cig(n) £ f(n) < c,gn)foralln > n,

Represents the tight (exact) bound of a function f(n)

Example

n?<2n?+3n+4<2n?+3n? + 4n?

n?< f(n) < 9n?

fn) = ©(n?)

NOTE: If f(n) = O(g(n)) and f(n) = Q(g(n)), then f(n) = ©(g(n)) provided g(n) is the same in
both O(g(n)) and Q(g(n)).

Function Classes for Asymptotic Analysis

Function classes in asymptotic analysis are used to categorize functions based on their
growth rates as the input size n increases. These classes help in understanding the
relative efficiency of algorithms by comparing their time or space complexities.
Commonly analysed classes include constant (O(1)), logarithmic (O(logzn)), linear (O(n)),
quadratic (O(n?)), exponential (O(2")), and factorial (O(n!)) complexities. Understanding
these growth patterns allows us to predict algorithm behaviour for large input sizes and
choose the most efficient solutions.

1<log;n<yn<n<nlogn<n?<n3<--<2"<3"<..<n"

This sequence represents the increasing order of growth rates for common functions
used in asymptotic analysis, from constant to exponential and beyond.

Examples

1. f(n) =n?logn +n

Checking for upper bound
nlogn + n < ¢ - (n%logn + n%logn)
nlogn + n < 2c¢ - (n%logn)

f(n) = O(n?logn)

Checking for lower bound
n?logn+n= 1 - (n%logn)
f(n) = Q(n’logn)

Checking for tight bound
nZlogn < nlogn + n < 2c - (n%logn)
f(n) = ©(n’logn)

. f(n) =log(n!)

log(1.1.1...1) < log(1.2.3...n) < log(n.n....n)
1<log(n!) < nlogn

Upper Bound
f(n) = O(nlogn)

Lower Bound

fin) = Q(1)

. fln)=n!
Checking for upper bound
n!=1.2.3..n<n.n...n

nl<n"
f(n) < n"
fin) =0(n")

Checking for lower bound
nl=123.n21.1..1
nl>1

fin) 2 1

fln) =Q(1)

. f(N) =log (Nljz)

Using Stirling’s Approximation,

n! ~ /2mn (ﬁ) ,
e
log(N!) ~ Nlog N — N + ; log(2nN),
N\ _ 1 B N
log (N/Z) ~ Nlog?2 —ElogN + const.= N log 2 + log(1/vN)

We know that log(1/+/N) grows much slower than N log 2

f(N) = O(N)

Examples on recursive relations

1.
void ABC(int n)
if(n > 0) Runs 1 time
pf(“) Runs 1 time
ABC(n-1) Runs T(n-1) times

The program runs T(n) no. of iterations (steps)
T(n) =T(n-1) + 2 =T(n-1) + O(1)

So, T(n) is given as:

Tn—-1)+1 if
T(n) (n—1)+ %n>0,
1 ifn=0.

Writing the recursive relation:
T(n)=T(n-1) + 1

T(n-1)=T(n-2) +1

T(2)=T(1)+1
T(1)=T(0) + 1
Summing all the above equations:
T(n)=T(0) +n
T(n)=n+1
Time Complexity = O(n)
2.

void ABC(int n)
if(n > 0)
for(i =0, i <n, i++)
p_F(“ ”)
ABC(n-1)

Runs 1 time

Runs (n+1) times
Runs n times

Runs T(n-1) times

The program runs T(n) no. of iterations (steps)
T(n) =T(n-1) + 2n + 2 = T(n-1) + O(n)

So, T(n) is given as:

T(n) = Tn—1)+n ?'fn >0,
1 ifn = 0.
Writing the recursive relation:
T(n)=T(n-1) +n

T(n-1) = T(n-2) + n-1

T(2)=T(1)+2
T(1)=T(0) + 1
Summing all the above equations:

nn+1)

T(n) = T(0) + >

n?+n+2

T(n) =™
Time Complexity = O(n?)
3.

ABC(int n)
if(n > 0) Runs 1 time
pfc*) Runs 1 time
ABC(n-1) Runs T(n-1) times
ABC(n-1) Runs T(n-1) time

The program runs T(n) no. of iterations (steps)
T(n) = 2T(n-1) + 2 = 2T(n-1) + O(1)

So, T(n) is given as:

T(n) 2T'(n—1)+1 %fn>0,
1 ifn =0.

Writing the recursive relation:
T(n)=2T(n-1) + 1
2T(n-1) = 2°T(n-2) + 2

22T(n-2) = 2°T(n-3) + 2

2"27(2) = 2"1T(1) + 2"
2m11(1) = 2"1(0) + 2™1
Summing all the above equations:

10

T(n) =2"T(0) + (1+ 2+ 2%+ ... + 2™})
T(n)=2"+ (2" —1)=2"*1 — 1
Time Complexity = O(2")

4.

ABC(int n)
if(n > 1) Runs 1 time
pf(*) Runs 1 time
ABC(n/2) Runs T(n/2) time

The program runs T(n) no. of iterations (steps)
T(n) =T(n/2) + 2 =T(n/2) + O(1)
So, T(n) is given as:
T(2)+1 ifn>1
T = {7
1 ifn=1.
Writing the recursive relation:
T(n)=T(n/2) + 1
T(n/2) =T(n/2%) + 1

T(n/2%?) = T(n/2%1) + 1

T(n/2%1) = T(n/2*) + 1

Summing all the above equations:

T(n) = T(n/2%) + k

The recurrence reaches base case when Zn—k = 1ork=logzn
Thus, T(n) = T(1) + logzn

T(n) =1 +logzn

Time Complexity = O(logan)

5. Merge Sort

T(n) = 2T (2) +n ifn>1,
1 i =1,

Writing the recursive relation:

T(n) = 2T(n/2) +n

11

2T(n/2) = 2°T(n/2?) + n

2%2T(n/2%2) = 2K1T(n/21) + n
2€1T(n/2%1) = 2kT(n/2%) + n
Summing all the above equations:
T(n) = 2¥T(n/2¥) + nk
The recurrence reaches base case when zlk = 1ork=logzn
T(n) = n + nlogzn
Time Complexity = O(nlogzn)
6.

T(n) = T(2)+n ifn>1,
1 fa=1

Writing the recursive relation:
T(n)=T(n/2) +n
T(n/2) = T(n/2?) + n/2

T(n/2%2) = T(n/2%?) + n/2k?
T(n/2¥?) = T(n/2%) + n/2**

Summing all the above equations:

ik
T(n) = 2kT(n/2) + n - 1_1%

The recurrence reaches base case when Zn—k = 1ork=logzn
T(n) =nT(1) +n(2-2"%) = 3n -3 = 3n - 2

Time Complexity = O(n)

7.
void ABC(int n)
if (n > 0) Runs 1 time
for(i =1, i <n, i =1%2) Runs [log:n]+1 times
pfC*) Runs [log:n] times
ABC(n-1) Runs T(n-1)

The program runs T(n) no. of iterations (steps)

12

T(n) = T(n-1) + 2logan + 2 = T(n-1) + O(logzn)

So, T(n) is given as:

T(n) = T(n—1)+logn ?fn> 0,
1 ifn =0.

Writing the recursive relation:
T(n) = T(n-1) + logz2n

T(n-1) = T(n-2) + logz(n-1)

T(2) =T(1) + logz2

T(1) = T(0) + log»1

Summing all the above equations:

T(n) = T(0) + log21 + log,2 + log23 + logz24 + ... + log2(n-1) + logzn
T(n) = 1 + logz(n!)

Time Complexity = O(nlogn)

[Check pg.8 Ex.2. for loga(n!) = O(nlogn)]

13

