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1. Exact Time Analysis 

Overview 
Exact Ɵme analysis involves determining the precise number of fundamental operaƟons 
executed by an algorithm, rather than just esƟmaƟng asymptoƟcally. It provides a detailed 
count of operaƟons like comparisons, iteraƟons, recursive calls, and variable assignments, 
helping to accurately evaluate the algorithm’s efficiency. It helps us to get an idea about the 
asymptoƟc Ɵme bounds. 

Examples 
1.  

sum(A,n){  
  s = 0  
  for i = 0 to n 
    s = s + A[i] 
  return s 
} 

This program calculates the sum of all elements in the array A of size n. 

In the soluƟon we will see how many Ɵmes each line has run. 

sum(A,n){  
  s = 0            Runs 1 time           
  for i = 0 to n   Runs (n+1) times 
    s = s + A[i]   Runs n times  
  return s         Runs 1 time 
} 

 The assignment s = 0 and return statement runs once each.  
 for loop runs for (n+1) Ɵmes as there are n+1 comparisons. The present value of i is 

compared with 0 through n. The loop stops when i = n. 
 The operaƟon inside the for loop runs n Ɵmes as there are n iteraƟons. 

Exact Ɵme = (1 + (n+1) + n + 1) = 2n + 3 

Time Complexity = O(n) 

2.  
add(A,B,n){  
  for i = 0 to n 
   { 
    for j = 0 to n 
      c[i,j] = A[i,j] + B[i,j] 
   } 
} 

This program calculates the sum of two n x n matrices A and B. 
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add(A,B,n){  
  for i = 0 to n                Runs n+1 times          
    for j = 0 to n              Runs n(n+1) times 
      c[i,j] = A[i,j] + B[i,j]  Runs n*n times 
} 

 By the same logic in Ex. 1, the first loop runs (n+1) Ɵmes and everything within that 
runs n Ɵmes, making it n(n+1) comparisons in the second loop.  

 The final addiƟon operaƟon runs n × n Ɵmes due to two nested loops.  

Exact Ɵme = n2 + n(n+1) + (n+1) = 2n2 + 2n + 1 

Time Complexity = O(n2) 

3.                                                                                                                   
mul(A,B,n){ 
 for i = 0 to n                   Runs n+1 times 
   for j = 0 to n                 Runs n(n+1) times 
     c[i,j] = 0                   Runs n*n times 
     for k = 0 to n               Runs n*n(n+1) times 
       c[i,j] = c[i,j] + A[i,k]*B[k,j]  Runs n*n*n times 
 } 

This program calculates the product of two n × n matrices A and B. 

 There are three nested loops running n Ɵmes each. This hints that the Ɵme 
complexity will be O(n3). 

Exact Ɵme = n3 + n2(n+1) + n2 + n(n+1) + (n+1) = n3 + 3n2 + 2n + 1 

Time Complexity = O(n3) 

4.  
for i = 0 to n   Runs n+1 times 
  pf(“IITKGP”)   Runs n times 

This program prints “IITKGP” n number of Ɵmes. 

Exact Ɵme = n + (n+1) = 2n + 1 

Time Complexity = O(n) 

5.  

for i = 0 to n, step = 2   Runs 


ଶ
+ 1 times 

  pf(“IITKGP”)             Runs 


ଶ
 times 

This program prints “IITKGP” with a step of 2. Thus making it n/2 no. of Ɵmes. 

Exact Ɵme = 
ଶ

+ (


ଶ
+ 1) = n + 1 

Time Complexity = O(n) 
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6.  
p = 0 
for (i = 1, p ≤ n, i++) 
  p = p + i  

This program increments the variable p by i, which is incremental in nature (i). 

 The stopping condiƟon is given as p > n. 
 

i p 
1 1 

2 1+2 
3 1+2+3 
… … 
k 1+2+..+k 

 
p > n 
1 + 2 + … + k > n 
(ାଵ)

ଶ
 > n 

kଶ + k > 2n 
k2 > n 
k > √𝑛 

Time Complexity = O(√𝑛) 

7.  
for (i = 1, i < n, i = i*2) 
  pf(“IITKGP”) 

The program keeps prinƟng 'IITKGP' for each iteraƟon of the loop, with the value of i 
doubling in each step unƟl it becomes greater than or equal to n. 

 The stopping condiƟon is given as i > n. 
i = 1 x 2 x 2 x…x 2 ≥ n 
2k  ≥ n 
k  ≥ log2 n  

 The for loop runs for [log2 n] no. of Ɵmes. Here, [.] denotes GIF. 

Time Complexity = O(log2 n) 

8.  
for (i = n, i ≥ 1, i = i/2) 
  pf(“IITKGP”) 

Let us say that the program runs for k no. of iteraƟons. 

 The stopping condiƟon is given as i < 1. 
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i = n × ଵ
ଶ

× ଵ
ଶ
 × ଵ

ଶ
× … × ଵ

ଶ
  =  

ଶೖ < 1 

2 > 𝑛 
k > log2 n  

Time Complexity = O(log2 n) 

9.  
for (i = 0, i < n, i = i++) 
  for(j = 0, j < i, j++) 
     pf(“IITKGP”) 

 
 No. of iteraƟons is given as: 

i j #iteraƟons 
1 0 1 
2 0  
 1 2 

3 0  
 1  
 2 3 

… … … 
n  n 

 

No. of iteraƟons = 1+2+3+..+n =  (ାଵ)

ଶ
 

Exact Ɵme = (ାଵ)

ଶ
 

Time Complexity = O(n2) 

 
10.  

for (i = 0, i*i < n, i = i++) 
  pf(“IITKGP”) 

 
 Stopping condiƟon is given as i2 ≥ n, or i ≥ √𝑛 
 No. of iteraƟons = [√𝑛], where [.] denotes GIF 

Time complexity = O(√𝑛) 

11.  
p = 0 
for(i = 1, i < n, i = i*2)   
  p++                       Runs p = [log2n] times 
 
for(j = 1, j < p, j = j*2)   
  pf(“ ”)                   Runs log2p = log2(log2n) times 

 
 The loops are NOT nested and dependant only in terms of the value of p. 
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 We will use the concept used in Q.7. and we will see that p = log2n. 
 The second loop similarly runs for log2p Ɵmes.  

Exact Ɵme = 1 + (p + 1) + p + (log2p + 1) + log2p = 1 + (log2n + 1) + log2n + (log2(log2n) + 1) + 
log2(log2n)  

Time Complexity = O(log2n) 

12.  
for(i = 0, i < n, i++)        Runs n+1 times 
  for(j = 1, j < n, j = j*2)  Runs n*([log2n]+1) times 
     pf(“ ”)                  Runs n*[log2n] times 

 
 This involves two nested loops, the outer having arithmeƟc increments, and the 

inner having geometric increments, doubling the value of j in each iteraƟon unƟl it is 
greater than or equal to n. 

Exact Ɵme = 2nlog2n + 2n + 1 

Time Complexity = O(nlog2n) 

13.  
a = 1           Runs 1 time 
while(a < b)    Runs [log2b]+1 times 
  pf(“IITKGP”)  Runs [log2b] times 
  a = a * 2     Runs [log2b] times 

This program prints “IITKGP” Ɵll the value of a is less than b. 

 Suppose there are k iteraƟons in the while loop. 
 Stopping condiƟon: 

a = 1 x 2 x 2 x …. x 2 (k Ɵmes) = 2k ≥ b 
k ≥ log2b 

Exact Ɵme = 3log2b + 2 

Time Complexity = O(log2b) 

SUMMARY 

 for(i = 0, i < n, i++)          O(n) 

 for(i = 0, i < n, i = i + 2)    O(n) 

 for(i = n, i > 1, i--)          O(n) 

 for(i = 1, i < n, i = i*2)      O(log2n) 

 for(i = 1, i < n, i = i*3)      O(log3n) 

 for(i = n, i > 1, i = i/2)      O(log2n) 
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2. AsymptoƟc Analysis 

Overview 
AsymptoƟc Analysis helps in evaluaƟng the efficiency of algorithms by analysing their 
growth rates as the input size n approaches infinity. The three key notaƟons are: 

1. Big-Oh (O): Upper Bound 

2. Big-Omega (Ω): Lower Bound 

3. Big-Theta (Θ): Tight/Average Bound 

Big-Oh (O) – Upper Bound 
DefiniƟon: For a given funcƟon g(n), O(g(n)) denotes the set of funcƟons f(n) saƟsfying 
the following property:  

There exist posiƟve constants c and 𝑛 such that: 

0 ≤ 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛) for all 𝑛 ≥ 𝑛 

Represents the upper bound of a funcƟon f(n) 

Example  

4n2 + 2n + 1 ≤ 𝑐 ⋅ (4n2 + 2n2 + n2) 

f(n) ≤ n2 

f(n) = O(n2) 

Big-Omega (Ω) – Lower Bound 
DefiniƟon: For a given funcƟon g(n), Ω(g(n)) denotes the set of funcƟons f(n) saƟsfying 
the following property:  

There exist posiƟve constants c and 𝑛 such that: 

0 ≤ 𝑐 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) for all 𝑛 ≥ 𝑛 

Represents the lower bound of a funcƟon f(n) 

Example  

4n + 3 ≥ n 

f(n) ≥ n 

f(n) = Ω(n) 
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Big-Theta (Θ) – Lower Bound 
DefiniƟon: For a given funcƟon g(n), Θ(g(n)) denotes the set of funcƟons f(n) saƟsfying 
the following property:  

There exist posiƟve constants c1, c2 and 𝑛 such that: 

0 ≤ 𝑐ଵ𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐ଶ𝑔(𝑛) for all 𝑛 > 𝑛 

Represents the Ɵght (exact) bound of a funcƟon f(n) 

Example  

n2 ≤ 2n2 + 3n + 4 ≤ 2n2 + 3n2 + 4n2 

n2 ≤ f(n) ≤ 9n2 

f(n) = Θ(n2) 

NOTE: If f(n) = O(g(n)) and f(n) = Ω(g(n)), then f(n) = Θ(g(n)) provided g(n) is the same in 
both O(g(n)) and Ω(g(n)). 

FuncƟon Classes for AsymptoƟc Analysis 
FuncƟon classes in asymptoƟc analysis are used to categorize funcƟons based on their 
growth rates as the input size n increases. These classes help in understanding the 
relaƟve efficiency of algorithms by comparing their Ɵme or space complexiƟes. 
Commonly analysed classes include constant (O(1)), logarithmic (O(log2n)), linear (O(n)), 
quadraƟc (O(n2)), exponenƟal (O(2n)), and factorial (O(n!)) complexiƟes. Understanding 
these growth paƩerns allows us to predict algorithm behaviour for large input sizes and 
choose the most efficient soluƟons. 

𝟏 < 𝐥𝐨𝐠𝟐 𝒏 < √𝒏 < 𝒏 < 𝒏 𝐥𝐨𝐠 𝒏 < 𝒏𝟐 < 𝒏𝟑 < ⋯ < 𝟐𝒏 < 𝟑𝒏 < ⋯ < 𝒏𝒏 

This sequence represents the increasing order of growth rates for common funcƟons 
used in asymptoƟc analysis, from constant to exponenƟal and beyond. 

Examples 
1. f(n) = n2logn + n 

 
Checking for upper bound 
n2logn + n ≤  𝑐 ⋅ (n2logn + n2logn) 
n2logn + n ≤  2𝑐 ⋅ (n2logn) 
f(n) = O(n2logn) 
 
Checking for lower bound 
n2logn + n ≥  1 ⋅ (n2logn) 
f(n) = Ω(n2logn) 
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Checking for Ɵght bound 
n2logn ≤ n2logn + n ≤  2𝑐 ⋅ (n2logn) 
f(n) = Θ(n2logn) 
 

2. f(n) = log(n!) 
 
log(1.1.1…1) ≤ log(1.2.3…n) ≤ log(n.n….n) 
1 ≤ log(n!) ≤ nlogn 
 
Upper Bound 
f(n) = O(nlogn) 
 
Lower Bound 
f(n) = Ω(1) 
 

3. f(n) = n! 
Checking for upper bound 
n! = 1.2.3…n ≤ n.n….n 
n! ≤ nn 
f(n) ≤ nn 

f(n) = O(nn) 
 
Checking for lower bound 
n! = 1.2.3…n ≥ 1.1…1 
n! ≥ 1 
f(n) ≥ 1 
f(n) = Ω(1) 
 

4. 𝑓(N) = 𝑙𝑜𝑔 ቀ ே
ே/ଶ

ቁ 

Using SƟrling’s ApproximaƟon, 
 
 

 

 
 

𝑙𝑜𝑔 ൬
𝑁

𝑁/2൰ ≈ 𝑁 𝑙𝑜𝑔 2 −
1

2
𝑙𝑜𝑔 𝑁 + 𝑐𝑜𝑛𝑠𝑡. = 𝑁 𝑙𝑜𝑔 2 + 𝑙𝑜𝑔൫1/√N൯ 

  
We know that 𝑙𝑜𝑔൫1/√N൯ grows much slower than  𝑁 𝑙𝑜𝑔 2 
 
f(N) = O(N) 
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Examples on recursive relaƟons 
1.  

void ABC(int n)    
  if(n > 0)      Runs 1 time 
    pf(“ ”)      Runs 1 time 
    ABC(n-1)     Runs T(n-1) times 

The program runs T(n) no. of iteraƟons (steps) 

T(n) = T(n-1) + 2 = T(n-1) + O(1) 

So, T(n) is given as: 

 

WriƟng the recursive relaƟon: 

T(n) = T(n-1) + 1 

T(n-1) = T(n-2) + 1 

… 

T(2) = T(1) + 1 

T(1) = T(0) + 1 

Summing all the above equaƟons: 

T(n) = T(0) + n 

T(n) = n + 1 

Time Complexity = O(n) 

2.  
void ABC(int n)  
  if(n > 0)                 Runs 1 time 
    for(i = 0, i < n, i++)  Runs (n+1) times 
      pf(“ ”)               Runs n times 
    ABC(n-1)                Runs T(n-1) times 

The program runs T(n) no. of iteraƟons (steps) 

T(n) = T(n-1) + 2n + 2 = T(n-1) + O(n) 

So, T(n) is given as: 



10 
 

 

WriƟng the recursive relaƟon: 

T(n) = T(n-1) + n 

T(n-1) = T(n-2) + n-1 

… 

T(2) = T(1) + 2 

T(1) = T(0) + 1 

Summing all the above equaƟons: 

T(n) = T(0) + 
(ାଵ)

ଶ
 

T(n) = 
మାାଶ

ଶ
 

Time Complexity = O(n2) 

3.  
ABC(int n)  
 if(n > 0)   Runs 1 time 
   pf(“ ”)   Runs 1 time 
   ABC(n-1)  Runs T(n-1) times 
   ABC(n-1)  Runs T(n-1) time 

The program runs T(n) no. of iteraƟons (steps) 

T(n) = 2T(n-1) + 2 = 2T(n-1) + O(1) 

So, T(n) is given as: 

 

WriƟng the recursive relaƟon: 

T(n) = 2T(n-1) + 1 

2T(n-1) = 22T(n-2) + 2 

22T(n-2) = 23T(n-3) + 22 

… 

2n-2T(2) = 2n-1T(1) + 2n-2 

2n-1T(1) = 2nT(0) + 2n-1 

Summing all the above equaƟons: 
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T(n) = 2nT(0) + (1 + 2 + 22 + … + 2n-1) 

T(n) = 2  + (2 − 1) = 2ାଵ  −  1 

Time Complexity = O(2) 

4.  
ABC(int n) 
  if(n > 1)   Runs 1 time 
    pf(“ ”)   Runs 1 time 
    ABC(n/2)  Runs T(n/2) time 

The program runs T(n) no. of iteraƟons (steps) 

T(n) = T(n/2) + 2 = T(n/2) + O(1) 

So, T(n) is given as: 

 

WriƟng the recursive relaƟon: 

T(n) = T(n/2) + 1 

T(n/2) = T(n/22) + 1 

… 

T(n/2k-2) = T(n/2k-1) + 1 

T(n/2k-1) = T(n/2k) + 1 

Summing all the above equaƟons: 

T(n) = T(n/2k) + 𝑘 

The recurrence reaches base case when 

ଶೖ
= 1 or k = log2n 

Thus, T(n) = T(1) + log2n  

T(n) = 1 + log2n 

Time Complexity = O(log2n) 

5. Merge Sort 
 

 

WriƟng the recursive relaƟon: 

T(n) = 2T(n/2) + n 
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2T(n/2) = 22T(n/22) + n 

… 

2k-2T(n/2k-2) = 2k-1T(n/2k-1) + n 

2k-1T(n/2k-1) = 2kT(n/2k) + n 

Summing all the above equaƟons: 

T(n) = 2kT(n/2k) + 𝑛𝑘 

The recurrence reaches base case when 

ଶೖ = 1 or k = log2n 

T(n) = n + nlog2n 

Time Complexity = O(nlog2n) 

6.  

 

WriƟng the recursive relaƟon: 

T(n) = T(n/2) + n 

T(n/2) = T(n/22) + n/2 

… 

T(n/2k-2) = T(n/2k-1) + n/2k-2 

T(n/2k-1) = T(n/2k) + n/2k-1 

Summing all the above equaƟons: 

T(n) = 2kT(n/2k) + 𝑛 ⋅
ଵିቀ

భ

మ
ቁ

ೖ

ଵି
భ

మ

 

The recurrence reaches base case when 

ଶೖ = 1 or k = log2n 

T(n) = nT(1) + n(2 – 21-k) = 3n - ଶ

ଶೖ = 3n – 2 

Time Complexity = O(n) 

7.  
void ABC(int n) 
  if (n > 0)                       Runs 1 time 
    for(i = 1, i < n, i = i*2)     Runs [log2n]+1 times 
        pf(“ ”)                    Runs [log2n] times 
    ABC(n-1)                       Runs T(n-1) 

The program runs T(n) no. of iteraƟons (steps) 
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T(n) = T(n-1) + 2log2n + 2 = T(n-1) + O(log2n) 

So, T(n) is given as: 

 

WriƟng the recursive relaƟon: 

T(n) = T(n-1) + log2n 

T(n-1) = T(n-2) + log2(n-1) 

… 

T(2) = T(1) + log22 

T(1) = T(0) + log21 

Summing all the above equaƟons: 

T(n) = T(0) + log21 + log22 + log23 + log24 + … + log2(n-1) + log2n 

T(n) = 1 + log2(n!) 

Time Complexity = O(nlogn)  

[Check pg.8 Ex.2. for log2(n!) = O(nlogn)] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


