
Rahul Verma (24BM6JP44)

Date 18-Mar-2025

FADML Scribe Notes

Linear Models

Linear models are fundamental in machine learning and statistics. They are primarily used for

classification and regression tasks. The two key types of linear models are:

1. Classification - Example: Perceptron, Logistic Regression (L.R)

2. Regression - Example: Linear Regression (L.R)

Perceptron (Classification)

The perceptron is a type of linear classifier used for binary classification problems. The

perceptron works as follows:

 Inputs 𝑥1, 𝑥2, … , 𝑥𝑛 are multiplied by their corresponding weights 𝑤1 , 𝑤2 , … , 𝑤𝑛.

 The weighted sum is computed:

𝑠 = 𝑤𝑇𝑥

 The activation function applies a threshold:

ℎ(𝑥) = sign(𝑠) = sign(𝑤𝑇𝑥)

 If the output is positive, it belongs to one class; otherwise, it belongs to the other

class.

Linear Regression (L.R)

Linear Regression is used for predicting continuous values. The model follows:

 ℎ(𝑥) = 𝑤𝑇 𝑥

This represents a linear relationship between the input features and the predicted value.

Loss Function

Linear regression uses the Mean Squared Error (MSE) as its loss function:

 𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑤𝑇𝑥𝑖)

2

𝑁

𝑖=1

A closed-form solution for w exists using the Normal Equation:

 𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦

This allows direct computation of optimal weights without requiring iterative optimization

methods like gradient descent.

Logistic Regression (L.R)

For logistic regression, we use the sigmoid activation function:

 θ(𝑠) =
𝑒𝑠

1 + 𝑒𝑠
=

1

1 + 𝑒−𝑠

This function outputs values between 0 and 1, making it suitable for probability estimation.

Probability Interpretation

For classification, we model the probability of a label given an input as:

𝑝(𝑦|𝑥) = θ(𝑠), 𝑦 = +1

𝑝(𝑦|𝑥) = 1 − θ(𝑠), 𝑦 = −1

This forms the basis of logistic regression.

Loss Function

The objective in logistic regression is to maximize the likelihood function, which leads to

minimizing the cross-entropy loss:

𝐿 =
1

𝑁
∑ 𝑙𝑛(1 + 𝑒

−𝑦
𝑖𝑤𝑇𝑥𝑖)

𝑁

𝑖=1

This function ensures that the predictions align with the true labels. Unlike linear regression,

logistic regression does not have a closed-form solution due to the non-linearity introduced

by the sigmoid function. Therefore, we rely on iterative optimization techniques such as

gradient descent to find the optimal parameters.

Gradient Descent

To optimize the parameters, we use stochastic gradient descent (SGD), which updates the

weights iteratively to minimize the loss function.

Higher Dimensions and Non-Linear Transformation

 By moving to higher dimensions, we can separate data more effectively.

 However, this comes with a computational penalty.

 To handle non-linearly separable data, we use transformations ϕ(𝑥).

Multi-Layer Perceptron (MLP)

 Here, P is a perceptron

 MLP is a feedforward and fully connected network, making it a type of Artificial

Neural Network (ANN).

 It consists of multiple layers:

o Input layer

o Hidden layers

o Output layer

 Each layer applies weights, biases, and activation functions.

 The perceptron-based MLP is not differentiable due to the step activation function.

This limitation makes it unsuitable for gradient-based learning.

 To overcome this, alternative activation functions (such as sigmoid, ReLU, and tanh)

are used, transforming the network into what we now call a Neural Network.

Pros and Cons of MLP

Pros:

 Can model complex patterns beyond simple linear separability.

 Enables hierarchical feature extraction through multiple layers.

 Fully connected structure allows information to propagate efficiently.

Cons:

 Perceptron-based MLP lacks differentiability, making training difficult.

 Computationally expensive due to fully connected layers.

 Prone to overfitting without proper regularization techniques

Neural Networks

Neural networks build upon MLP by introducing differentiable activation functions, allowing

for efficient training using backpropagation. A neural network consists of multiple layers:

1. Input Layer: Accepts feature inputs.

2. Hidden Layers: Applies non-linear transformations through activation functions.

3. Output Layer: Produces final predictions.

𝑊𝑖𝑗(𝑙) = {1 ≤ 𝑙 ≤ 𝐿, 𝑙 𝑙𝑎𝑦𝑒𝑟𝑠
 0 ≤ 𝑖 ≤ 𝑑(𝑙−1), 𝑖𝑛𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟
 1 ≤ 𝑗 ≤ 𝑑(𝑙), 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟

For every 𝒊, 𝒋, 𝒍.

Error Computation and Weight Updates

For a given network, the total error is defined as:

 𝑒(𝑤) = error (or loss) function

The choice of the error function (or loss function) depends on the type of problem being

solved. Some commonly used error functions include:

 Mean Squared Error (MSE): Used for regression problems

 Huber Loss: Used for robust regression, combining MSE and MAE.

 Hinge Loss: Used in SVM-based classification.

To minimize the error, we adjust the weights iteratively using optimization techniques. This

requires calculating how the error changes with respect to the weights, which is done by

taking the derivative of the loss function.

To understand this process, we first analyze it for a single neuron:

𝑿𝒋
(𝒍)

= 𝜽(𝑺𝒋
(𝒍)

) = 𝜽(∑ 𝑿𝒊
(𝒍−𝟏)

𝒘𝒊𝒋
𝒍

𝒅𝒍−𝟏

𝒊=𝟎

)

𝝏𝒆(𝒘)

𝝏𝒘𝒊𝒋
(𝒍) =

𝝏𝒆(𝒘)

𝝏𝑺𝒋
(𝒍) ×

𝝏𝑺𝒋
(𝒍)

𝝏𝒘𝒊𝒋
(𝒍) = 𝜹𝒋

(𝒍)
 × 𝑿𝒊

(𝒍−𝟏)

To facilitate a clearer understanding and generalize the above formula, we first analyze a

partial structure of the network, focusing on the relationship between layers:

i

(l-1)layer l layer

1 1

𝜽

𝜽

𝜽 𝜽

𝜽

𝜽

𝑿𝒊
(𝒍−𝟏)

 𝑿𝒋
(𝒍)

𝒘𝒊𝒋
𝒍

Σ=𝑺𝒋
(𝒍)

 Σ=𝑺𝒊
(𝒍−𝟏)

𝜹𝒊
(𝒍−𝟏)

= 𝒇(𝜹𝒋
(𝒍)

)

𝜹𝒊
(𝒍−𝟏)

=
𝝏𝒆(𝒘)

𝝏𝑺𝒊
(𝒍−𝟏) = ∑

𝝏𝒆(𝒘)

𝝏𝑺𝒋
(𝒍) ×

𝒅𝒍

𝒋=𝟏

𝝏𝑺𝒋
(𝒍)

𝝏𝒙𝒊
(𝒍−𝟏) ×

𝝏𝑿𝒊
(𝒍−𝟏)

𝝏𝑺𝒊
(𝒍−𝟏) = ∑ 𝜹𝒋

(𝒍)

𝒅𝒍

𝒋=𝟏

 × 𝒘𝒊𝒋
(𝒍)

× 𝜽′(𝑺𝒊
(𝒍−𝟏)

)

This formulation helps generalize the backpropagation process, ensuring efficient weight

updates across all layers of the network.

To update weights, we compute gradients using backpropagation:

As we had propagated through one previous layer, so by applying recursion, we efficiently

update weights across all layers. This process follows a structured approach:

1. Compute gradients at the output layer using the chain rule.

2. Propagate these gradients backward through hidden layers.

3. Recursively apply the weight update formula until all layers are updated.

This recursive approach ensures efficient parameter tuning, making deep learning models

scalable and trainable regardless of depth.

Steps for Backpropagation

1. Initialize Weights and Biases
o Assign small random values to weights and biases.

2. Loop Through Epochs

o Repeat the process multiple times for better optimization.

3. Select an Input Sample
o Choose one input and feed it into the neural network.

4. Forward Propagation
o Compute weighted sums and apply activation functions.

5. Compute Loss

o Compare predicted and actual values using an error function.

6. Compute Gradients (Backpropagation)
o Calculate how the error changes with respect to each weight.

7. Update Weights Using Gradient Descent
o Update rule:

 𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 + η
∂𝐿

∂𝑤

o 𝜂 is the learning rate.

8. Recursive Weight Updates for Deeper Networks

o Extend weight updates using recursion for any depth.

	Rahul Verma (24BM6JP44)
	Date 18-Mar-2025
	FADML Scribe Notes
	Linear Models
	Perceptron (Classification)
	Linear Regression (L.R)
	Loss Function
	Logistic Regression (L.R)
	Probability Interpretation
	Loss Function (1)
	Gradient Descent
	Higher Dimensions and Non-Linear Transformation
	Multi-Layer Perceptron (MLP)
	Pros and Cons of MLP
	Pros:
	Cons:

	Neural Networks
	Error Computation and Weight Updates
	,,𝜹-𝒊-,𝒍−𝟏..=𝒇(𝜹-𝒋-,𝒍..)
	,𝜹-𝒊-,𝒍−𝟏..=,𝝏𝒆,𝒘.-𝝏,𝑺-𝒊-,𝒍−𝟏...=,𝒋=𝟏-,𝒅-𝒍.-,𝝏𝒆,𝒘.-𝝏,𝑺-𝒋-,𝒍...×.,,𝝏,𝑺-𝒋-,𝒍..-𝝏,𝒙-𝒊-,𝒍−𝟏...×,𝝏,𝑿-𝒊-,𝒍−𝟏..-𝝏,𝑺-𝒊-,𝒍−𝟏...=,𝒋=𝟏-,𝒅-𝒍.-,𝜹-𝒋-,𝒍... ×,𝒘-𝒊𝒋-,𝒍..×𝜽′(𝑺-𝒊-,𝒍−𝟏..)

	Steps for Backpropagation

