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Bayesian Learning  

Bayesian Learning is a fundamental approach in probabilistic modelling that allows us to determine the probability of 

an outcome given a set of observed variables. This method is widely used in machine learning, decision theory, and 

artificial intelligence due to its ability to incorporate prior knowledge and update beliefs as new data become 

available. The core objective of Bayesian Learning is to compute the posterior probability:  

P(Y|X1, X2, … , Xn) 

where Y is the target variable, and X1, X2 .... Xn are the input features. 

 

Why Bayesian Learning? 

• Captures dependencies between features and outcomes. 

• Challenges include data sparsity and exponential growth of parameters, which make direct probability 

estimation infeasible. 

 

Issues with the Direct Estimation  

• Data Sparsity: Many feature combinations may not appear in the training data, making the probability estimation 

unreliable.  

• Exponential Growth of Parameters: Without simplifying assumptions, estimating 2n − 1 probabilities become 

infeasible for large n. For example, with 10 binary features, we need to have 1023 probability values. To overcome 

these challenges, we turn to Bayesian parameter estimation techniques that use prior knowledge to make probability 

estimation feasible. 

 

Bayesian Inference and Conditional Independence 

Bayes’ Theorem: Now, let us see if we can reduce the values needed for an n-binary feature dataset using Bayes’ rule. 

𝑃( 𝑌 ∣ 𝑋1, … , 𝑋𝑛 ) =
𝑃(𝑌)𝑃(𝑋1, … , 𝑋𝑛|𝑌)

𝑃(𝑋1, … , 𝑋𝑛)
 

 

𝑃( 𝑌 ∣ 𝑋1, … , 𝑋𝑛 ) =
𝑃(𝑌)𝑃( 𝑋1, … , 𝑋𝑛 ∣∣ 𝑌 )

𝑃(𝑌 = 1)𝑃( 𝑋1, … , 𝑋𝑛 ∣∣ 𝑌 = 1 ) + 𝑃(𝑌 = 0)𝑃( 𝑋1, … , 𝑋𝑛 ∣∣ 𝑌 = 0 )
 

 



So, now we need 2n − 1 estimations for each for P(Y = 1), P(X1, ..., Xn|Y = 1), and P(Y = 0), P(X1, ..., Xn|Y = 0). Then, 

two more estimations are combined, leading to a total estimation of 2(2n − 1) + 2 estimations.  

Interestingly, applying Bayes’ rule initially increases the number of required estimations rather than reducing them.  

To simplify computations, we assume conditional independence between features given Y:  

𝑃( 𝑋1, … , 𝑋𝑛 ∣∣ 𝑌 ) = ∏ 𝑃( 𝑋𝑖 ∣∣ 𝑌 )

𝑛

𝑖=1

 

This assumption forms the basis of the Naive Bayes classifier, reducing the number of required estimates from       

2(2n − 1) + 2 to 2n + 2. 

 

Conditional Independence Breakdown 

𝑃(𝑋1 ∣ 𝑋2, 𝑌) = 𝑃(𝑋1 ∣ 𝑌)  

This implies that X1 and X2 are conditionally independent given Y, which can be represented as: 

𝑋1 ⊥  𝑋2 | 𝑌 

We factorize the probabilities as below: 

𝑃(𝑋1, 𝑋2 ∣ 𝑌) = 𝑃(𝑋1 ∣ 𝑌)𝑃(𝑋2 ∣ 𝑌) 

Using the definition of conditional probability, 

𝑃(𝑋1, 𝑋2, 𝑌) = 𝑃(𝑋1|𝑌)𝑃(𝑋2|𝑌)𝑃(𝑌) 

Dividing both sides by P(Y ):  

𝑃(𝑋1, 𝑋2) =
𝑃( 𝑋1 ∣∣ 𝑌 )𝑃( 𝑋2 ∣∣ 𝑌 )𝑃(𝑌)

𝑃(𝑌)
 

 

Since P(Y ) cancels out in numerator and denominator: 

𝑃(𝑋1, 𝑋2) = 𝑃(𝑋1|𝑌)𝑃(𝑋2|𝑌) 

 

Naive Bayes Classification - Handling Data Sparsity 

Let us better understand this concept with an example.  

Consider a classification problem where we want to predict whether a student will pass or fail based on the following 

3 attributes - Attendance (Poor(P)/Average(A)/High(H)), Reads (Y/N), and Assignment Solving 

(Low(L)/Medium(M)/High(H)).  

𝑃( +∣ 𝐴, 𝑁, 𝑀 ) =
𝑃(+)

𝑃( 𝑀 ∣ + )
× 𝑃( 𝐴 ∣ + ) × 𝑃( 𝑁 ∣ + ) 

Expanding the denominator: 

𝑃(+)(𝑃( 𝐴 ∣ + )𝑃( 𝑁 ∣ + )𝑃( 𝑀 ∣ + )) + 𝑃(−)𝑃( 𝐴 ∣ − )𝑃( 𝑁 ∣ − )𝑃( 𝑀 ∣ − ) 

 

Decision Boundaries and Log-Linear Models 

• Decision boundaries separate different classification regions. 

• Taking the logarithm of Naive Bayes probabilities transforms them into a log-linear model: 



Decision Boundary in Naive Bayes: To classify an observation, we compare the posterior probabilities.  

 

𝑃( 𝑌 ∣∣ 𝑋1, 𝑋2, … , 𝑋𝑛 ) ≥ 𝑃( �̅� ∣∣ 𝑋1, … , 𝑋𝑛 ) 

Taking the natural logarithm: 

ln (
𝑃(𝑌) ∏ 𝑃( 𝑋𝑖 ∣∣ 𝑌 )𝑛

𝑖=1

𝑃(�̅�) ∏ 𝑃( 𝑋𝑖 ∣∣ �̅� )𝑛
𝑖=1

) ≥ 0 

Rewriting: 

ln 𝑃 (𝑌) − ln 𝑃 (�̅�) + ∑

𝑛

𝑖=1

ln (
𝑃( 𝑋𝑖 ∣∣ 𝑌 )

𝑃( 𝑋𝑖 ∣∣ �̅� )
) ≥ 0 

 

Since ln P(Y) − ln P(Ȳ) is a constant, we define: 

𝐶 = ln 𝑃 (𝑌) − ln 𝑃 (�̅�) 

 

Thus, the decision boundary is given by: 

𝐶 + ∑

𝑛

𝑖=1

ln (
𝑃( 𝑋𝑖 ∣∣ 𝑌 )

𝑃( 𝑋𝑖 ∣∣ �̅� )
) ≥ 0 

 

Log-Linear Model Interpretation 

This shows that the Naive Bayes classifier produces a log-linear model, meaning: 

 

• Probabilities are transformed into log-space to form a linear decision boundary.  

 

• When mapped back to the original probability space, the boundary can become non-linear.  

 

 

Real-World Applications 

• Spam Filtering: Classifying emails as spam or not. 

• Medical Diagnosis: Identifying diseases like cancer using MRI scans. 

 

Gaussian Naive Bayes for Continuous Features 

• Up to this point, we have primarily dealt with discrete-valued features. However, many real-world applications 

involve features that vary continuously over a range.  

• To extend Naive Bayes classification to such cases, we assume that each feature follows a specific probability 

distribution.  

• The most common type of distribution is Gaussian (Normal) Distribution:  

𝑃( 𝑋𝑖 ∣∣ 𝑌 = 𝑘 ) =
1

√2πσ2
𝑒

−
(𝑋−μ)2

2σ2  

where:  

– µ is the mean of the feature for class k  



– σ2is the variance of the feature for class k  

• For predicting for a new data point, we just substitute the values of X for each of the features and find the class 

which has highest probability  

 

Example: Basketball Player Classification 

To demonstrate Gaussian Naive Bayes classification, consider a dataset where students are described using two 

continuous features:  

1. Height (H)  

2. Marks (M)  

• We want to classify whether a student is a basketball player (BB) or not  

Using Bayes’ Theorem:  

𝑃( 𝐵𝐵 ∣ 𝐻, 𝑀 ) =
𝑃( 𝐻 ∣ 𝐵𝐵 )𝑃( 𝑀 ∣ 𝐵𝐵 )𝑃(𝐵𝐵)

𝑃(𝐻, 𝑀)
 

Expanding the denominator: 

𝑃(𝐻, 𝑀) = 𝑃( 𝐻, 𝑀 ∣ 𝐵𝐵 )𝑃(𝐵𝐵) + 𝑃( 𝐻, 𝑀 ∣∣ 𝐵𝐵̅̅ ̅̅ )𝑃(𝐵𝐵̅̅ ̅̅ ) 

 

𝑃( 𝐵𝐵 ∣ 𝐻, 𝑀 ) =
𝑃( 𝐻 ∣ 𝐵𝐵 )𝑃( 𝑀 ∣ 𝐵𝐵 )𝑃(𝐵𝐵)

𝑃( 𝐻, 𝑀 ∣ 𝐵𝐵 )𝑃(𝐵𝐵) + 𝑃( 𝐻, 𝑀 ∣∣ 𝐵𝐵̅̅ ̅̅ )𝑃(𝐵𝐵̅̅ ̅̅ )
 

 

Alternatively, we can use the ratio: 

𝑃(𝐵𝐵)𝑃(𝐻|𝐵𝐵)𝑃(𝑀|𝐵𝐵)

𝑃(𝐵𝐵)𝑃(𝐻|𝐵𝐵)𝑃(𝑀|𝐵𝐵)
 

 

If the ratio is greater than 1, the student is classified as a basketball player (BB).  

Gaussian distributions exist for Marks, representing probabilities conditioned on whether a student is a basketball 

player or not. – Similarly, two Gaussian distributions exist for Height, representing conditional probabilities given the 

class. 

The combination of Height and Marks distributions results in a region of concentric circles in the graph. – These 

circles represent contours of equal probability for classifying a student as BB or BB. 

The classification boundary is depicted in orange. – This boundary separates basketball players from non-basketball 

players based on height and marks. 

Depending on the mean and variance of Height and Marks distributions, the concentric circles can deform into 

ellipses. – This is because Gaussian distributions in two dimensions often lead to elliptical decision boundaries rather 

than perfect circles. 



 

Gaussian Distributions and Decision Boundary for Basketball Player Classification 

 

Otherwise, the student is classified as not a basketball player BB. 

If the σ’s are same, then the boundary will be linear. Otherwise, if the σ’s are not same we will have non-linear 

boundary. 

 

Key Takeaways 

• Naive Bayes is computationally efficient and reduces complexity. 

• Decision boundaries are log-linear, making classification straightforward. 

• Gaussian Naive Bayes extends the model to continuous data for better real-world applications. 

• Widely used in spam detection, medical diagnostics, and text classification. 

 

Question:  

How does the Naive Bayes model help in text classification problems like spam detection? 

______________________________________________________________________________________________ 

 

 

 



Data sparsity solution 

 

 

BAYESIAN BELIEF NETWORK:  

Smart representation of joint probability distribution is called Bayesian Network in simple terms. 

A graph with nodes as attributes and edges as dependencies is called Bayesian Network. It is DAG (Directed Acyclic 

Graph) 

 

The naive Bayes classifier makes significant use of the assumption that the values of the attributes (a1 . . .an) are 

conditionally independent given the target value y. This assumption dramatically reduces the complexity of learning 

the target function. When it is met, the naive Bayes classifier outputs the optimal Bayes classification. However, in 

many cases this conditional independence assumption is clearly overly restrictive. In contrast to the naive Bayes 

classifier, which assumes that all the variables are conditionally independent given the value of the target variable, 

Bayesian belief networks allow conditional independence assumptions that apply to subsets of the variables. Thus, 

Bayesian belief networks provide an intermediate approach that is less constraining than the global assumption of 

conditional independence made by the naive Bayes classifier, but more tractable than avoiding conditional 

independence assumptions altogether. In general, a Bayesian belief network describes the probability distribution over 

a set of variables. 

 

Concept of Conditional Independence 

 

[ 𝑋 ⊥ 𝑌 ∣ 𝑍   ∀𝑖, 𝑗, 𝑘 "{ (𝑋 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑌, 𝑔𝑖𝑣𝑒𝑛 𝑍)} ] 

[ 𝑃(𝑋 =  𝑥_𝑖 ∣ 𝑌 =  𝑦_𝑗, 𝑍 =  𝑧_𝑘)  =  𝑃(𝑋 =  𝑥_𝑖 ∣ 𝑍 =  𝑧_𝑘) ] 

Alternatively, 

𝑃(𝑋 = 𝑥, 𝑦 = 𝑦𝑖|𝑍 = 𝑧𝑘) = 𝑃(𝑋 = 𝑥𝑖|𝑍 = 𝑧𝑘) ⋅ 𝑃(𝑦 = 𝑦𝑖|𝑍 = 𝑧𝑘) 

Marginal Independence: 

𝑋 ⊥ 𝑌 ∀(𝑖, 𝑗) 

𝑃(𝑋 = 𝑥𝑖 , 𝑦 = 𝑦𝑗) = 𝑃(𝑋 = 𝑥𝑖) ⋅ 𝑃(𝑦 = 𝑦𝑗) 

≡ 𝑃(𝑋 = 𝑥𝑖|𝑦 = 𝑦𝑗) = 𝑃(𝑋 = 𝑥𝑖) 

 

 

 

 



Example: A Bayesian Network with variables: 

 

 

Each node will have its local table of joint probability distribution rather than the global table. 

For the node P, L and R are its parent.  

Parent 

Power cut(P) 

P=1 P=0 

L(Lightening) R(Rain) Probabilities Probabilities 

0 0 0.01 0.99 

0 1 .. .. 

1 0 .. .. 

1 1 .. .. 

Local Joint Probability table for Power Cut depending upon parents L and R 

But using the chain rule of probability we can estimate the overall probability of any entry of Joint Distribution. Only 

dependent entries are present, so Bayesian Network cuts the no. o entries per node. 

 

So, we have a joint probability distribution table (JPDT) for each of the attribute. JPDT (Xi, Parent (Xi))  

 

Question: Why fragmented probability distribution tables for each attribute rather than complete JPDT? 

Answer: Because now we have a smarter casual dependency, we only need that information to compute probability.  

Probability of (S, L, ~R, P, ~T) = ?  

If given a JPDT, just look up, but not given.  

P(S, L, ~R, P, ~T) = P(S) * P(L | S) * P(~R | S) * P(P | L, ~R) * P(~T | L) 

Each of them is a direct look-up into the individual attribute Joint probability table. 

 

 

 



Bayes Network for Naïve Bayes: 

𝑃( 𝑋1, … , 𝑋𝑛 ∣∣ 𝑌 ) = ∏ 𝑃( 𝑋𝑖 ∣∣ 𝑌 )

𝑛

𝑖=1

 

Naïve Bayes has a restricted view of the Bayesian Network. 

 

We would be better of with having partial conditional dependence than total independence (like in Naïve Bayes) 

Demerit: Store Graph and Traverse. 

 

D-separation Algorithm 

Let’s take an example: Consider A = Shoe Size, B = Reading Ability, C = Age 

 

Case 1: Given Child Age (C), A and B are independent.  [Tail to Tail] 

  

Fork 

𝑃(𝑋, 𝑌 ∣ 𝑍) = 𝑃(𝑋 ∣ 𝑍)𝑃(𝑌 ∣ 𝑍)  , if   𝑿 ⊥ 𝒀 ∣ 𝒁 

𝑃(𝐴 𝐵|𝐶) =
𝑃(𝐴 𝐵 𝐶)

𝑃(𝐶)
 

𝑃(𝐴 𝐵|𝐶) =
𝑃(𝐴|𝐶) ⋅ 𝑃(𝐵|𝐶) ⋅ 𝑃(𝐶)

𝑃(𝐶)
 

𝑃(𝐴 𝐵|𝐶) = 𝑃(𝐴|𝐶) ⋅ 𝑃(𝐵|𝐶) 

Hence, A is conditionally independent of B given C 

𝑨 ⊥ 𝑩  | C and    𝑨 ⊥ 𝑩  | Φ 

 



 

Let’s take another example: Consider A = Fire, B = Alarm, C = Smoke 

Case 2: Given C, A and B are independent.  [Head to Tail] 

 

  

Chain 

𝑃(𝐴 𝐵|𝐶) =
𝑃(𝐴 𝐵 𝐶)

𝑃(𝐶)
 

 

𝑃(𝐴 𝐵|𝐶) =
𝑃(𝐴|𝐶) ⋅ 𝑃(𝐵|𝐶) ⋅ 𝑃(𝐶)

𝑃(𝐶)
 

𝑃(𝐴 𝐵|𝐶) = 𝑃(𝐴|𝐶) ⋅ 𝑃(𝐵|𝐶) 

Hence, A is conditionally independent of B given C 

𝑨 ⊥ 𝑩  | C  

 

𝑨 ⊥ 𝑩  | Φ 

 

Let’s take another example: Consider A = Talent, B = Beauty, C = Celebrity 

Case 3: Given C, A and B are not independent.  [Head to Head] 

 

 

Collide 

 



 

𝑃(𝐴 𝐵|𝐶) =
𝑃(𝐴 𝐵 𝐶)

𝑃(𝐶)
 

 

𝑃(𝐴 𝐵|𝐶) =
𝑃(𝐶|𝐴) ⋅ 𝑃(𝐶|𝐵) ⋅ 𝑃(𝐴) ⋅ 𝑃(𝐵)

𝑃(𝐶)
 

 

𝑃(𝐴 𝐵|𝐶) = 𝑃(𝐴|𝐶) ⋅ 𝑃(𝐵|𝐶) 

 

Hence, A is not conditionally independent of B given C if both are the causes of C. 

𝑨 ⊥ 𝑩  | C 

𝑨 ⊥ 𝑩  | Φ 

 

Question for practice: 

Given the below graph answer the following questions based on the D-separation algorithm 

 

Is  𝑳 ⊥ 𝑹  | S  ?    : Yes 

Is  𝑳 ⊥ 𝑹  | P  ?    : No 

Key Concept Summary of D-separation Algorithm: 

Two variables X and Y are d-separated (conditionally independent) given a set of variables Z if every path between X 

and Y is blocked by Z in the Bayesian network. 

A path is blocked if at least one of the following holds: 

1. Chain Structure: X→M→Y 

o Blocked if M is in Z. 

2. Fork Structure: X←M→Y 

o Blocked if M is in Z. 

3. Collider Structure (V-Structure): X→M←Y 

o Blocked if M is not in Z and no descendant of M is in Z. 

 



d-Separation Algorithm 

Given a Bayesian network and variables X, Y, and Z, follow these steps: 

1. Identify all paths between X and Y in the DAG. 

2. Check for blocking conditions:  

o If any path is blocked due to a chain or fork node being in Z, the path is blocked. 

o If a path has a collider node that is not in Z (and none of its descendants are in Z), the path is blocked. 

3. If all paths are blocked, then X and Y are conditionally independent given Z (i.e., X⊥Y∣Z). 

4. If at least one path is open, then X and Y are conditionally dependent given Z. 

 

Question for practice: 

 

   

• 𝑿𝟏 ⊥ 𝑿𝟑  | X2 = ? 

• 𝑿𝟏 ⊥ 𝑿𝟒  | X2 = ? 

• 𝑿𝟏 ⊥ 𝑿𝟒  | {X2, X3} = ? 

• 𝑿𝟏 ⊥ 𝑿𝟒  | Φ = ? 

 

 



The Expectation-Maximization (EM) algorithm is an iterative method used to estimate unknown parameters in 

statistical models. It helps find the best values for unknown parameters, especially when some data is missing or hidden.  

It works in two steps:  

• E-step (Expectation Step): Estimates missing or hidden values using current parameter estimates.  

• M-step (Maximization Step): Updates model parameters to maximize the likelihood based on the estimated 

values from the E-step.  

 

By iteratively repeating these steps, the EM algorithm seeks to maximize the likelihood of the observed data. It is 

commonly used for clustering, where latent variables are inferred and has applications in various fields, including 

machine learning, computer vision, and natural language processing. 

 

Supervised learning Framework 

 

Objectives 

• Algorithm: → Ein(g) ≈ 0 

• Theory: (Hoeffding's Inequality)   

𝑃(|𝐸in(𝑔) − 𝐸out(𝑔)| > 𝜖) ≤ 2𝑀 exp(−2𝜖2𝑁) 

 

Supervised learning problem 

 

 

            Regression                                                     Classification                                           Logistic Regression 

 

 

 



If we want probabilities as outcomes, we use Naïve Bayes and Gaussian Naïve Bayes etc. 

If we reduce the in-sample error, we can track the out sample well. This ensures that what we have learned in sample 

is a good hypothesis.   

 

Perceptron Learning Algorithm 

The Perceptron Learning Algorithm (PLA) is a fundamental algorithm in machine learning used for binary 

classification. It is an iterative method that adjusts the weights of a linear classifier to correctly classify training 

examples. 

 

The decision boundary of a perceptron is a straight line (or hyperplane in higher dimensions) that separates the two 

classes. When a misclassified point is encountered, the perceptron updates its weight vector to move the decision 

boundary in the correct direction. 

 

        𝑤1𝑥1 + 𝑤2𝑥2 ≥ Threshold 

⟹    𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤0 ⋅ 1 ≥ 0 

      ⟹    ∑ 𝑤𝑖𝑥𝑖

𝑑

𝑖=0

≥ 0 where 𝑥0 = 1 

 

 

sign (∑ 𝑤𝑖𝑥𝑖

𝑑

𝑖=0

) = sign(𝑤𝑇𝑥) 

 

where, w and X are vectors of dimensions (d+1) X 1. 

 

 



Delta Update Rule (Perceptron Learning Rule) 

 

The Delta Update Rule, also known as the Perceptron Learning Rule, is a fundamental weight update mechanism 

used in perceptron learning and gradient-based optimization methods. 

Explanation 

• If a training example xi is correctly classified, no update is made. 

• If xi is misclassified, the weight vector is adjusted in the direction of xi to reduce classification error. 

• The learning rate η controls how aggressively weights are updated. 

 

Pocket Learning Algorithm 

The Pocket Algorithm is an improved version of the Perceptron Learning Algorithm (PLA) designed to handle 

cases where the data is not linearly separable. Unlike the standard perceptron, which continues updating weights 

indefinitely for non-separable data, the Pocket Algorithm maintains the best weight vector found so far. 

 

Why Pocket Algorithm? 

• The Perceptron Algorithm only works if the data is linearly separable. 

• If data is not linearly separable, the perceptron never stops updating and does not converge to a stable 

solution. 

• The Pocket Algorithm stores (or "pockets") the best weight vector encountered so far, ensuring a more 

stable and reliable solution. 

 

Regression Problem 

 

 

 



𝐸in(𝑤) =
1

𝑁
∑(𝑤𝑇𝑥𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

 

=
1

𝑁
||𝑋𝑤 − 𝑌||2 

 

Derivative and Solution: 

𝑑𝐸in

𝑑𝑤
= 0 

 

⇒
2

𝑁
𝑋𝑇(𝑋𝑤 − 𝑌) = 0 

 

⇒ 𝑋𝑇𝑋𝑤 = 𝑋𝑇𝑌 

 

⇒ 𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

Pseudo-Inverse Solution: 

Since sometimes 𝑋𝑇𝑋 is not invertible, we use the pseudo-inverse method: 

𝑤 = 𝑋+𝑌 

 

 where,   𝑋+ = (𝑋𝑇𝑋)−1𝑋𝑇 

 

Dimensions:  

• 𝑋 is of shape (𝑁 × (𝑑 + 1)) 

• 𝑋𝑇𝑋 is of shape ((𝑑 + 1) × (𝑑 + 1)) 

• 𝑋𝑇𝑌 is of shape ((𝑑 + 1) × 1) 

• 𝑤 is of shape ((𝑑 + 1) × 1) 

Notes & Observations: 

• Issue: If there is too much data and too many rows, inverse calculation becomes computationally expensive. 

• Alternative Approach: Instead of direct inversion, we use generalized inverse or pseudo-inverse methods. 

 

Advantages & Disadvantages of Closed-Form Solution 

Demerit: It may tend to overfit one side and may not always provide the best-fit line. 

Merit: It provides initialization for the regression line, which can be useful for iterative optimization methods. 

 

Gradient Descent Methods for Linear Regression 

Gradient Descent is an iterative optimization algorithm used to minimize the error function in machine learning 

models, especially when a closed-form solution is computationally expensive or infeasible. Below are the key types of 

Gradient Descent methods used in Linear Regression. 



Batch Gradient Descent  

𝐵𝑎𝑡𝑐ℎ 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐷𝑒𝑠𝑐𝑒𝑛𝑡 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡. 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑢𝑙𝑒: 

𝑤 ≔ 𝑤 − 𝜂
1

𝑁
∑ ∇𝐸in(𝑤)

𝑁

𝑖=1

 

𝑊ℎ𝑒𝑟𝑒: 

•  𝑤 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑒𝑐𝑡𝑜𝑟,   

•  𝜂 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒, 

•  𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 

• 𝛻𝐸in(𝑤)𝑖𝑠𝑡ℎ𝑒𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑜𝑓𝑡ℎ𝑒𝑒𝑟𝑟𝑜𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

 

Stochastic Gradient Descent (SGD) 

Instead of computing the gradient over the entire dataset, Stochastic Gradient Descent updates the weights using a 

single random sample at each iteration. 

Update Rule: 

𝑤 ≔ 𝑤 − 𝜂∇𝐸in(𝑤(𝑖)) 

Mini-Batch Gradient Descent 

Mini-Batch Gradient Descent is a compromise between Batch and Stochastic Gradient Descent. It updates the weights 

using a small subset (batch) of data at each iteration. 

Update Rule: 

𝑤 ≔ 𝑤 − 𝜂
1

𝐵
∑ ∇𝐸in(𝑤(𝑗))

𝐵

𝑗=1

 

where: 

• B is the batch size. 

 

 


