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1. Supervised Learning Framework 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Given a set of training examples, we do not explicitly know the function f, but we observe 
corresponding pairs of (X,Y). We approximate the unknown target function either in a deterministic 
form, where we directly map inputs to outputs, or in a probabilistic form, where we model the 
conditional probability ℙ(Y | X).  

Using this data, we develop a learning algorithm that produces a hypothesis, which serves as an 
approximation of f. The goal is to derive this hypothesis in a structured and generalizable manner. 

To design an effective learning algorithm, we first define a hypothesis set H, which represents the 
space of possible functions the model can learn. If we take a generic approach, we might consider 
including every possible hypothesis. However, this comes with constraints on the size of the 
hypothesis space, as the theory of generalization attempts to balance the number of hypotheses we 
consider with the bounds we derive. This, in turn, influences the generalization ability of our model 
on unseen data. 

 

Unknown Target 

f: X  Y 

or ℙ(Y | X) 

Training Examples 

(X1, Y1) …… (XN, YN) 

LEARNING ALGORITHM 

Hypothesis Set 

 = { h1, h2, …. hm }  

a) Decision Tree  
Learning 

b) Naïve Bayes 
(MLE/MAP) 

c) Perceptron Learning 

a) Boolean formula 
b) Probability tables 
c) Hyperplane 

Final Hypothesis 

g ≈ f 

a) g ← Decision Tree 
b) g ← Bayesian Network 

        + CPDT (or JPDT) 
c) g ← Perceptron 



1.1. Common Supervised Learning Frameworks 
 

 Decision Tree Learning – We use it to learn Boolean formulas, which produces a structured 
representation of the data. The decision tree can be interpreted as a likelihood model or a 
Boolean formula, where each path from the root to a leaf forms a conjunctive clause, and 
the overall tree represents a disjunction of these clauses. 

 Bayesian Methods – For probabilistic outcomes, we use models such as Naïve Bayes, 
Gaussian Naïve Bayes, and other conditional probability-based algorithms. We find 
probability distributions through smart estimations like Maximum Likelihood Estimation 
(MLE) or Maximum A Posteriori (MAP) estimation, or by incorporating domain knowledge in 
the form of Bayesian Networks.  
In Bayesian methods, we can represent dependencies between variables using a Conditional 
Probability Distribution Table (CPDT) or a Joint Probability Distribution Table (JPDT). 

 Perceptron Learning – Here we use simple linear models for classification. It creates 
hyperplanes (2D it is a line, in 3D a plane, and in higher dimensions, a hyperplane). It serves 
as a fundamental building block, where multiple linear boundaries can be combined to form 
more complex models, eventually leading to Artificial Neural Networks and Deep Learning. 

 

1.2. Objectives 
 

 Algorithmic: E୧୬(g)  ≈  0 

If we can reduce the in-sample error close to zero by using practical algorithms, the model is 
likely to track well or generalize well on out-of-sample data. Given the number of input 
examples, our objective is to make the least error over those examples to achieve the best 
learning performance. 

 

 Theory: ℙ[ |E୧୬(g)– E୭୳୲(g)| >  ϵ ] ≤  2Meିଶ஫మ୒  (Hoeffding)   

 
The probability that in-sample error Ein(g) deviates from out-sample error Eout(g) by more than 
ε is at most 2Meିଶ஫మ୒, where: 
M = Number of hypotheses (models) considered 
N = Number of training examples 
ϵ = Allowed error  
 
 

1.3. Supervised Learning Problems 
 
 
 
 
 

Supervised Learning Problems 

Classification Regression Logistic Regression 

(1.1) 



2. Perceptron Learning Problem (or Hyperplane) 
 

2.1. Classification Problem and the Perceptron Model 
 

                                                                                                                          

 

 

 

 

 

   
       

The figure represents a binary classification problem, where data points are categorized as plus (+) 
and minus (−). The black line acts as a decision boundary (classifier) separating the two groups. The 
curved arrows suggest that the line's position might be adjustable during the learning process. 

Our algorithm determines a linear separator (classifier) to separate the two classes. The equation of 
this line is: 

𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ  ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
⇒  𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ 0 
⇒  𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ − 𝑤଴ ≥ 0 

A new point (x₁, x₂) is classified based on its position relative to this boundary: 

 𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ  ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, classify as plus (+). 
 𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ  ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, classify as minus (−). 

This means that to classify any new point, we only need to compute the expression (2.1) and check if 
it is less than or exceeds zero. 

This generalizes to multi-dimensional data with d features, where given 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥ଷ) the 
classification boundary is represented as: 

෍ 𝑤௜

ௗ

௜ି଴

𝑥௜ ≥ 0 

Where x0  = 1 is an assumption that allows for a bias term 

Classification Rule: 

To classify a new point x, we evaluate the sign of the linear formula ℎ ∈ H 

X1 

X2 

(2.1) 

(2.2) 



ℎ(𝑥) = 𝑠𝑖𝑔𝑛 ቌ෍ 𝑤௜

ௗ

௜ି଴

𝑥௜ቍ 

 If h(x) is positive → classify as plus (+1)  
 If h(x) is negative → classify as minus (−1) 
 
Linear Algebra Formulation: 

Using vector notation, we get (2.3) simplifies to a dot product: 

ℎ(𝑥) =  𝑠𝑖𝑔𝑛 (𝑤்𝑥) 
 

Where 𝑤 = ൥

𝑤଴

⋮
𝑤ௗ

൩  is a (d+1) X 1 weight vector  

 

              𝑥 = ൥

𝑥଴

⋮
𝑥ௗ

൩   is a (d+1) X 1 feature vector 

 
 
 
 

2.2. Classification Steps 
 

We are not given the decision boundary beforehand. Instead, our task is to find this line based on 
the given training examples. The only parameters that determine the positioning of this line are the 
weights (wi). During learning, we adjust these weights to position the line correctly, ensuring it 
separates the data accurately. 

a) How to find the line? 
We start with an arbitrary vector (initial line). Given all the points, we check whether they are 
classified correctly. If a point is misclassified, we adjust the line accordingly. 
 

b) How to adjust the line? 
Adjustment can be done in two ways: 
 Rotating the line → Changing the slope by modifying w1, w2, … , wd. 
 Shifting the line → AdjusƟng the bias term w0. 

 
 
 
 
 
 
 
 
 
 

(2.3) 

(2.4) 

X1 

X2 



c) When do we update? 
We update the weights whenever a misclassification occurs. For example, consider the 
misclassified point X’ in the figure above. If X’ is actually positive, but our current decision 
boundary incorrectly classifies it as negative, an update is needed. 
 

d) Why is the sign incorrect?      
Classification is based on the dot product 𝑤்𝑥. A misclassification happens when 𝑤்𝑥 has the 
wrong sign. In this case, X’ is actually positive (+1), but the dot product is negative. This occurs 
because w and x form an obtuse angle, making their dot product negative. 
 
The other situation could be, w and x formed acute angle but y was -1. Both of these situations 
can be seen in the figures below. 
 

y = + 1 and (X’ , +)           y = -1  and (X’ , +)       
 

 
 

 
 
 
 
 
 
 

e) How to update? 
Since the weights (parameters) determine classification, we need to update them to correct the 
misclassification. Our goal is to adjust w so that: 

 In the first case, instead of an obtuse angle, w and x form an acute angle making 𝑤்𝑥 
positive. 

𝑊ᇱ ← 𝑊 + 𝑋 

 Similarly, in second situation, if 𝑤்𝑥 was positive, but the actual label y was negative (-1), 
we need to reverse the effect, making the angle obtuse: 

 
𝑊ᇱ ← 𝑊 − 𝑋 

 

                             y = + 1         y = -1         

  
  

 

 

 



f) Delta Update Rule 

Combining both cases, the weight update rule is done only for the misclassified Xs: 

𝑊ᇱ ← 𝑊 + 𝑦𝑋    𝑜𝑟 

𝑊ᇱ ← 𝑊 + ∆𝑊 

where y is the true label (+1 or −1), ensuring that misclassified points adjust the boundary in the 
correct direction.  
 
 
 
 

 

 

 

 

 

 

 

 

 

           Rotating                   Shifting        Final Hyperplane 

 

 

3. Linear Model 
 

3.1. Pocket Algorithm  
 

 

     Fig. 3.1. Perceptron Learning Algorithm         Fig. 3.2. Pocket Algorithm 

(2.5) 

X1 

X2 

X1 

X2 

X1 

X2 



In the previously discussed classification problem, the classifier makes some errors during training. 
We take one example, rotate or shift the decision boundary slightly, and try to improve the result. 
Each example gives us a certain in-sample error Ein, but we can only observe this error on the 
training set.  

In each iteration, we compute Ein based on the training examples which may increase or decrease 
till it converges. The basic learning assumption is that in-sample error tracks the out-of-sample 
error and the Eout will be within a bound.  

𝐸௜௡  ≈ 𝐸௢௨௧ 

So, given the sample, if we classify in such a way that we reduce Ein , we are in a good position to 
estimate and say that our out-of-sample performance will also improve. This is the idea behind 
Perceptron Learning Algorithm (PLA), as shown in Fig. 3.1. 

Fig. 3.2 shows a simple extension or improvement over PLA, known as the Pocket Algorithm. Instead 
of simply updating the hypothesis at every step, we keep track of the best solution i.e. min(E) and 
corresponding Wis , seen so far and keep the in-sample performance in our pocket: 

 We compute Ein at each step and check whether the new model improves classification. 
 If the new model reduces Ein , we replace the stored hypothesis with the new one. 
 If not, we keep the best solution in our pocket until a better one appears. 

This strategy ensures that we do not switch to a worse classifier, leading to significant improvements 
in classification performance compared to standard PLA. 

If we do not use the Pocket Algorithm, we can sometimes randomize the starting points and 
perform the learning process. Randomization can help in reducing bias and can assist in cross-
validation by providing different initial conditions. 

 

3.2. Hand Digit Recognition 
 

 

 

  

 

 

 

  

 

 



 

 

 

 

 

 

          Fig. 3.3. Handwritten Digits                  Fig. 3.4. 16 x 16 pixel image 

Suppose in handwritten digit recognition, we have a pincode like 721302. People may write the digit 
'7' in different ways as shown in Fig. 3.3. , leading to significant variations. To process this, we take 
an input of 16×16 pixels (𝑥ଵ, 𝑥ଶ, … 𝑥ଶହ଺ ) and identify which pixels are bolded as depicted in Fig. 3.4. 
However, with so many attributes, the complexity increases. 

To handle this, we extract meaningful features using an algorithm. For example, symmetry—the 
digit '1' is more symmetric than '5'. Similarly, in terms of intensity, '5' has more black pixels than '1'. 
If we plot intensity vs. symmetry, we get a distribution of handwritten digits, where some '1's may 
appear bolder than usual, and some '5's might be more symmetric than expected. A sample plot is 
shown below: 
 

 

 

 

 

 

 

  Intensity  

                Fig. 3.5. Intensity vs Symmetry Plot of handwritten digits 5s and 1s 

Since some digits may not be perfectly separable, so we do not aim for Ein = 0 (zero in-sample 
error). Instead, we seek a decision boundary (represented by the yellow line in Fig.3.5.) in the form: 

𝑤଴ + 𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ = 0 

where 𝑥ଵ𝑎𝑛𝑑 𝑥ଶ represent intensity and symmetry, respectively. This defines the problem space we 
are targeting for classification. So, here our aim is to reduce the number of attributes rather than 
working in a 256 dimensional domain.                                                                                          
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How do we get the features? 

In traditional approaches, feature extraction is done manually based on domain knowledge. 
However, in modern approaches, we use deep networks where features are automatically extracted. 
For this, we use Convolutional Neural Networks (CNNs)—we convolute and figure out the features 
i.e. apply convolution operations to detect patterns like edges, curves, and textures at different 
layers. After extracting features, we reduce the dimensionality because generalization improves in 
lower-dimensional spaces. In higher dimensions, the degrees of freedom increase and the possibility 
of doing bad in higher dimensions is more than in lower dimensions. 

 

4. Regression 
4.1. Regression Problem 
 

 

 

 

 

 

 

 

 

        

Above figure illustrates a regression approach where the outcome is not binary (+1 or -1) but a real 
number. We have data points representing FADML marks vs. salary, and our goal is to fit the best 
line (hypothesis) that minimizes the sum of all errors in the training set. 

In regression problems, we focus only on predicting the value, so we concentrate on the expression 
𝑤 • 𝑥. Mathematically, for N data points, our prediction is 𝑤்𝑥௜ while 𝑦௜ is the actual value. To 
measure error, we compute the Mean Squared Error (MSE): 

𝐸in(𝑤) =
1

𝑁
෍(𝑤்𝑥௜ − 𝑦௜)

ଶ

ே

௜ୀଵ

 

=
1

𝑁
||𝑋𝑤 − 𝑌||ଶ 

 

𝑎𝑛𝑑 𝑤 = ൥

𝑤0

⋮
𝑤𝑑

൩ Where 

FADML Marks (X) 

Sa
la

ry
 (

Y
) 

 

(4.1) 



Our objective is to determine w that minimizes 𝐸in, ensuring the best possible fit for the given data. 
Thus, we take partial derivative of Ein with respect to w and equate it to 0. 

𝜕𝐸௜௡

𝜕𝑤
= 0  

⇒
2

𝑁
𝑋்(𝑋𝑤 − 𝑌) = 0 

⇒ 𝑋்𝑋𝑤 = 𝑋்𝑌 

     ⇒ 𝑤 = (𝑋்𝑋)ିଵ𝑋்𝑌 

Dimensions: 

 𝑋 : ൫𝑁 × (𝑑 + 1)൯ 

 𝑋்𝑋 : ൫(𝑑 + 1) × (𝑑 + 1)൯ 

 𝑋்𝑌 : ൫(𝑑 + 1) × 1൯ 

 𝑤 : ൫(𝑑 + 1) × 1൯ 
 

(4.2) gives us a closed form solution and sometimes the term (𝑋்𝑋)ିଵ𝑋்  is called pseudo-inverse 
of X because if we multiply it by X we get an identity matrix. 

 

 

4.2. Gradient Descent Methods 
 

Gradient Descent is an iterative optimization algorithm used to minimize the error function in 
machine learning, especially when a closed-form solution (e.g. pseudoinverse) is computationally 
expensive or infeasible. 

 

4.2.1. One-step Batch Gradient Descent  
The closed-form solution 𝒘 = (𝑿𝑻𝑿)ି𝟏𝑿𝑻𝒀 feels like a one-step batch update since it directly 
jumps to the solution, but it is not referred to as gradient descent 
 

4.3.2. Batch Gradient Descent 
Computes the gradient using the entire dataset and updates weights in one step per iteration. 

𝑤 ← 𝑤 − 𝜂
1

𝑁
෍ ∇𝐸in(𝑤)

ே

௜ୀଵ

 

4.3.3. Stochastic Gradient Descent 
Updates weights after computing the gradient from a single random sample per iteration. 

(4.2) 



𝑤 ← 𝑤 − 𝜂∇𝐸in൫𝑤(௜)൯ 

 
4.3.4. Mini-Batch Gradient Descent 
Updates weights using a small batch of data, balancing efficiency and stability. 

𝑤 ← 𝑤 − 𝜂
1

𝐵
෍ ∇𝐸in൫𝑤(௝)൯

஻

௝ୀଵ

 

 

where:                                         𝑤 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑒𝑐𝑡𝑜𝑟,   

𝜂 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒,   

𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠,   

𝛻𝐸in(𝑤)𝑖𝑠𝑡ℎ𝑒𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑜𝑓𝑡ℎ𝑒𝑒𝑟𝑟𝑜𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

 

 

4.3. Demerits and Merits of using Linear Regression for Classification 
 

Demerits: 

 

 

 

 

 

 

Consider the figure above: since the density of positives is higher than negatives, the regression line 
shifts closer to the positive cloud to minimize error. However, this can lead to poor generalization 
and does not necessarily provide the best classification boundary. It may overfit one side and fail to 
achieve the optimal class-separating line. 

 

Merits:  

 It is a simple algorithm that can be solved with a single matrix multiplication. If the data is not 
perfectly separable, it still provides a line that fits the data as best as possible. 
 

 Regression aims to find the best-fit line by starting with arbitrary weights and solving the 
regression problem. This can be used as an initialization for the classification problem where 
the regression line is then refined using the Perceptron Learning Algorithm (PLA) to obtain a 
better classification boundary, thereby reducing the number of iterations required. 
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