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BAYESIAN BELIEF NETWORK 
The Naïve Bayes Classifier makes significant use of the assumption that the values of attributes 
are Conditionally Independent for a given target value, reducing the complexity of learning the 
target function. However, this assumption is overly restrictive. 

A Bayesian belief network describes the probability distribution governing a set of variables by 
specifying a set of Conditional Independent assumptions and a set of conditional probabilities. 
In Contrast to the naïve Bayes Classifier, Bayesian belief networks allow stating Conditional 
Independence assumptions that apply to subsets of the variables. 

 

Conditional Independence 
Let X, Y and Z be three discrete-valued random variables. X is conditionally independent of Y 
given Z if the probability distribution of X is independent of the value of Y given a value for Z: 

𝑃(𝑋 =  𝑥𝑖 | 𝑌 =  𝑦𝑖 , 𝑍 =  𝑧𝑖) =  𝑃(𝑋 =  𝑥𝑖 | 𝑍 =  𝑧𝑖)  ∀ 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖    

 𝑜𝑟 𝑃(𝑋 | 𝑌, 𝑍) =  𝑃(𝑋 | 𝑍)    

 

This definition of conditional independence can be extended to sets of variables as well: 

𝑃( 𝑋1 … 𝑋𝑙  | 𝑌1 … 𝑌𝑚, 𝑍1 … 𝑍𝑛) =  𝑃( 𝑋1 … 𝑋𝑙  | 𝑍1 … 𝑍𝑛)    

 

Say A1 is conditionally independent of instance attribute A2 given the target value V, then: 

𝑃( 𝐴1 ,  𝐴2 | 𝑉) =  𝑃( 𝐴1 |  𝐴2, 𝑉) 𝑃( 𝐴2 | 𝑉) =  𝑃( 𝐴1 | 𝑉) 𝑃( 𝐴2 | 𝑉) 

 

Representation 
The Bayesian network represents the joint probability distribution by specifying a set of 
conditional independent assumptions (represented by a directed acyclic graph) and sets of 
local conditional probabilities. A node in the Bayesian network represents each variable in the 
joint space.  The network is generally built from domain knowledge. 

For each variable, two types of information are specified: 
1. The network arcs assert that the variable is conditionally independent of its non-descendants 
in the network, given its immediate predecessors. We say X is a descendant of Y if there is a 
directed path from Y to X.  



2. A conditional probability table is given for each variable, describing the probability 
distribution for that variable given the values of its immediate predecessors. 

 

Let us consider a Bayesian Network (B Net) and the Conditional Probability Distribution table 
(CPDT) of Boolean variables Stormcloud (SC), Depression (D), Lightning (L), Rain (R), Thunder 
(T), Power cut (PC), Water logging (WL). 

 

 

The numbers beside the node represent the total estimates of 
probabilities required 

16 Probability estimates are required (a drop from 27). For 
example, Node ‘L’ requires two estimates: 

P (L | SC) and P (L | ⌐SC) 

 

D-Separation 
D-separation (d connotes "directional") is a criterion for deciding, from a given causal graph, 
whether a set X of variables is independent of another set Y, given a third set Z. The idea is to 
associate "dependence" with "connectedness" (i.e., the existence of a connecting path) and 
"independence" with "unconnected-ness" or "separation". Three scenarios of directed graphs 
are possible: 

1. Chain: 

a) The joint distribution corresponding to this graph: 

b) Suppose C is not observed, can test to see if a and b are independent by marginalizing 
over c to give: 

this in general does not factorize into p(a)*p(b), hence: 

Figure: Bayesian Network 



c) If c is observed, 

 

We obtain the conditional independence property:     

 

2. Fork 

a) The Joint distribution corresponding to this graph,  

b) If c is not observed, then we can investigate whether a and b are independent by 
marginalizing both sides with respect to c to give: 

In general, this does not factorize into the product p(a)p(b), and so: 

c) Suppose c is observed; we can easily write down the conditional distribution of a 

and b, given c, in the following form, hence the conditional independence. 

 

 

 

 

3. Collide 

 

a) The Joint distribution corresponding to this graph, 



b) If C is not observed, Marginalizing both sides over c we obtain: 

 

c) If C is observed, the conditional distribution of A and B is then given by: 

which is not equivalent to product p(a)p(b), so: 

Summary 

EM ALGORITHM 
The Expectation-Maximization (EM) algorithm is an iterative method used to estimate 
unknown parameters in statistical models. It helps find the best values for unknown 
parameters, especially when some data is missing or hidden. 

It works in two steps: 

1. E-step (Expectation Step): Estimates missing or hidden values using current parameter 
estimates. 

2. M-step (Maximization Step): Updates model parameters to maximize the likelihood 
based on the estimated values from the E-step. 

By iteratively repeating these steps, the EM algorithm seeks to maximize the likelihood of the 
observed data. It is commonly used for clustering, where latent variables are inferred and has 
applications in various fields, including machine learning, computer vision, and natural 
language processing. 

 



Example:  
Let us illustrate the EM algorithm with the Movie Rating Model. We'll use: 

 

G ∈ {comedy(c), drama(d)} (hidden variable) 
R1, R2 ∈ {1,2,3,4,5} (observed variables) 

Suppose we have the following dataset where genre G is unobserved: 
Dtrain = {(?, 2, 2), (?, 1, 2)}  [the values represent (G, R1, R2)] 

Initial parameter estimates: 
P(G=c) = 0.5, P(G=d) = 0.5 
P(R=1|G=c) = 0.4, P(R=2|G=c) = 0.6 
P(R=1|G=d) = 0.6, P(R=2|G=d) = 0.4 

One Iteration of EM 

E-step: For the first example (?, 2, 2), we compute: 
P(G=c, R1=2, R2=2) = 0.5 × 0.6 × 0.6 = 0.18 
P(G=d, R1=2, R2=2) = 0.5 × 0.4 × 0.4 = 0.08 

Normalizing to get P (G|R1=2, R2=2): 
P(G=c|R1=2, R2=2) = 0.18/(0.18+0.08) = 0.69 
P(G=d|R1=2, R2=2) = 0.08/(0.18+0.08) = 0.31 

Similarly, for the second example (?, 1, 2): 
P(G=c, R1=1, R2=2) = 0.5 × 0.4 × 0.6 = 0.12 
P(G=d, R1=1, R2=2) = 0.5 × 0.6 × 0.4 = 0.12 

Normalizing: 
P(G=c|R1=1, R2=2) = 0.12/(0.12+0.12) = 0.5 
P(G=d|R1=1, R2=2) = 0.12/(0.12+0.12) = 0.5 

M-step: Update parameters using weighted counts: 
P(G=c) = (0.69 + 0.5)/2 = 0.595 
P(G=d) = (0.31 + 0.5)/2 = 0.405 

For the conditional probabilities: 
P(R=1|G=c) = 0.5×1 / (0.5+0.69) = 0.42 
P(R=2|G=c) = (0.69×1 + 0.5×1) / (0.69+0.5+0.69+0.5) = 0.58 
P(R=1|G=d) = 0.5×1 / (0.5+0.31) = 0.62 
P(R=2|G=d) = (0.31×1 + 0.5×1) / (0.31+0.5+0.31+0.5) = 0.38 



These updated parameters would then be used in the next iteration. Iterations are done till the 
parameters converge. 
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