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1. BAYESIAN LEARNING: (RECAP) 

 
Y = Target Variable 
Xi = Attributes ( i =1 - n) 
 
Considering: 1. Number of target variables = 1 
  2. Number of attributes = n 
 
Concerns :  

1. Determine P(y | x1,x2,………xn) 
2. From Joint Probability Distribution Table (JPDT) of the attributes  
3. Issues : Data Sparsity  => Solution 

 
 
 
 
 
 

 
 
 
 
 

Given training data D, we are interested in finding the most probable hypothesis h that hold good 
 

H : Hypothesis space (set of hypothesis) 
h ∈ H  
D : Available training data 
 

P(h) : Initial probability that hypothesis h holds true 
P(D)  : Probability of D given no knowledge about hypothesis h 
P(D|h) : Probability of observing D given hypothesis (h) holds true 
 
P(h | D) : Probability that hypothesis h holds true given D is observed  
 
 
Posterior Probability -> It reflects the confidence that h holds after we have seen the training data D. 
 
 
 
From Bayes Theorem:  
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Maximum A Posteriori (MAP) hypothesis: 
During learning, the algorithm considers some set of candidate hypotheses H and is interested in 
finding the most probable hypothesis h ∈ H, given the observed data D (or at least one of the 
maximally probable if there are several).  
 
Any such maximally probable hypothesis is called a maximum a posteriori (MAP) hypothesis (hMAP) 
 
More precisely, we will say that hMAP is a MAP hypothesis provided: 
 
 
 
 
 
 
 
 
Maximum Likelihood (ML) hypothesis: 
In some cases, we will assume that every hypothesis in H is equally probable a priori (P(hi) = P(h;) for 
all hi and h; in H). In this case we can further simplify Equation (6.2) and need only consider the term 
P(D1h) to find the most probable hypothesis. P(D l h) is often called the likelihood of the data D 
given h. 
 
Any hypothesis that maximizes P(D l h) is called a maximum likelihood (ML) hypothesis, hML. 
More precisely, we will say that hML is a ML hypothesis provided: 
 
 

 

 

2. BAYESIAN CLASSIFIER: 

Consider a hypothesis space (H) containing three hypotheses, hl, h2, and h3. Suppose that the 
posterior probabilities of these hypotheses given the training data(D) are .4, .3, and .3 respectively.  
 

P (h1 | D) =0.4 
P (h2 | D) =0.3 
P (h3 | D) =0.3 

 

Thus, h1 is the MAP hypothesis. 
 

Suppose a new instance x is encountered, such that: 
 

h1(x) = (+)ve 
h2(x) = (-)ve 
h3(x) = (-)ve 

 

Taking all hypotheses into account,  
P(+) = 0.4 
P(-) = 0.6 

 

Hence the most probable classification of the given instance(x) is Negative (with probability = 0.6) , 
which is different from the classification generated by the MAP Hypothesis. 
 

Since P(D) is a constant independent of h. 



In general, the most probable classification of the new instance is obtained by combining the 
predictions of all hypotheses, weighted by their posterior prob- abilities. 
 

If the possible classification of the new example can take on any value vj from some set V, then the 
probability P(vj | D) that the correct classification for the new instance is vj, is just 
 

 
The optimal classification of the new instance is the value vj, for which P(vj | D)  is maximum.  
Bayes optimal classification: 
 
 
 
 

3. NAÏVE BAYES CLASSIFIER: 

It applies to learning tasks where each instance x is described by a conjunction of attribute values 
and where the target function f(x) can take on any value from some finite set V. 
 

A set of training examples of the target function is provided, 
and a new instance is presented, described by the tuple of attribute values (al, a2.. .an).  
 

We need to predict the target value, or classification, for this new instance. 
 

The Bayesian approach: Assign the most probable target value, VMAP, given the attribute values (al, 
a2.. .an) that describe the instance 
 

 
 
Using Bayes Theorem:  
 

Assumption in Naïve Bayes: The attribute values are conditionally independent given the target 
value.  
 
Consider 2 attributes X1, X2 and a target variable Y 
 

1. P(X1 | X2, Y) = P(X1 | Y)  
2. P(X1, X2 | Y) = P(X1 | Y)* P(X2 | Y) 

 
In other words, given the target value of the instance, the probability of observing the conjunction 

(al, a2.. .an) is just the product of the probabilities for the individual attributes:  

 

 

 

Now :  

 

VNB : The target value output by the Naive Bayes classifier 



Thus, the naive Bayes learning method involves a learning step in which the various P(vj) and P(ai|vj) 

terms are estimated, based on their frequencies over the training data. The set of these estimates 

corresponds to the learned hypothesis. This hypothesis is then used to classify each new instance by 

applying the above rule. 

In log space Naïve Bayes has a linear classification boundary. 

 

 

4. GAUSSIAN NAÏVE BAYES CLASSIFIER: 

Gaussian Naive Bayes is a type of Naive Bayes method working on continuous attributes and the 

data features that follows Gaussian distribution throughout the dataset. Before diving deep into 

this topic we must gain a basic understanding of principles on which Gaussian Naive Bayes work. 

Here are some terminologies that can help us gain knowledge for further study. 

Mathematics Behind Gaussian Naive Bayes: 
 

Gaussian Naive Bayes assumes that the likelihood (P(xi ∣ y)) follows the Gaussian Distribution for 
each xi within yk. Therefore, 
 

 

Where: 

• Xi is the feature value, 

• μ is the mean of the feature values for a given class y 

• σ is the standard deviation of the feature values for that class, 

• π is a constant (approximately 3.14159), 

• e is the base of the natural logarithm. 
 

To classify each new data point x the algorithm finds out the maximum value of the posterior 

probability of each class and assigns the data point to that class. 

Consider the following example of a dataset having 2 continuous attribute and a single target 
variable: 
Attribute 1: Height of the student (H) 
Attribute 2: FADML marks of the student(F) 
Target Variable: Basket Ball Player (BB) / Non-Basket ball player(BB’) 
 

Height of the student FADML Marks of the student Is a basket ball player 

H F BB / BB’ 

 
P(H | BB)  ->  N(µH|BB , σ2

H|BB) 
P(H | BB’)  ->  N(µH|BB’ , σ2

H|BB’) 
P(F | BB)  ->  N(µF|BB , σ2

F|BB) 
P(F | BB’)  ->  N(µF|BB ‘, σ2

F|BB’) 
 

 

https://www.geeksforgeeks.org/naive-bayes-classifiers/


 

Now : 
      
 

 
Since given the target variable (BB) H and F are conditionally independent  
 
Hence we can write       
 
For a given training data P( H,F) and P(BB) is const 
 
 
 
Similarly 

 
 
 
 
 
 
From the available training data we can calculate all the components of the RHS of the above 
equation, thus the probability of a particular outcome { Prob(Basket Ball Player | height and Marks) /  
Prob( Not a Basket Ball Player | Height and Marks) } can be determined. 
 
 

DETERMINING THE CLASSIFICATION BOUNDARY FOR THIS EXAMPLE:   
Classification Boundary between “Basketball Player” and “Non-Basketball Player" given 
the Height and FADML marks of the student. 
 

 



 
 

5. BAYESIAN BELIEF NETWORK: 
 

The naive Bayes classifier makes significant use of the assumption that the values of the attributes 
(a1 . . .an) are conditionally independent given the target value y. This assumption dramatically 
reduces the complexity of learning the target function. When it is met, the naive Bayes classifier 
outputs the optimal Bayes classification. However, in many cases this conditional independence 
assumption is clearly overly restrictive. 
 

In contrast to the naive Bayes classifier, which assumes that all the variables are conditionally 
independent given the value of the target variable, Bayesian belief networks allow conditional 
independence assumptions that apply to subsets of the variables. Thus, Bayesian belief networks 
provide an intermediate approach that is less constraining than the global assumption of conditional 
independence made by the naive Bayes classifier, but more tractable than avoiding conditional 
independence assumptions altogether. 
 

In general, a Bayesian belief network describes the probability distribution over a set of variables. 
 

5a: CONCEPT OF CONDITIONAL INDEPENDENCE 
Let X, Y, and Z be three discrete-valued random variables. We say that X is conditionally independent 
of Y given Z if the probability distribution governing X is independent of the value of Y given a value 
for 2; that is, if 
 
 
 
for xi ∈ V(X), yj ∈ V(Y), and zk ∈ V(Z). 
where V(x) = Set of all possible values of x, and respectively same for V(y) and V(z). 
 
We commonly write the above expression in abbreviated form as P (X | Y, Z) = P (X | Z).  
This definition of conditional independence can be extended to sets of variables as well. We say that 
the set of variables (X1 . . . Xl ) is conditionally independent of the set of variables (Yl . . . Ym ) given the 
set of variables ( Z1 . . . Zn ), if  
 

P (X1 ... Xl | (Y1 ... Ym ), (Z1 ... Z n) ) = P (X1 ... Xl | Z1 ... Z n) 
 
 

5b: Bayesian Belief Network Representation: 
 

It represents the joint probability distribution for a set of variables.  
 
 
 
 
 
 
 
 
 
 
 
 
For example, the Bayesian network above represents the joint probability distribution over the 
Boolean variables Storm, Lightning, Thunder, ForestFire, Campjre, and BusTourGroup. In general, a 



Bayesian network represents the joint probability distribution by specifying a set of conditional 
independence assumptions (represented by a directed acyclic graph), together with sets of local 
conditional probabilities.  
 
Each variable in the joint space is represented by a node in the Bayesian network. For each variable 
two types of information are specified.  

• First, the network arcs represent the assertion that the variable is conditionally independent 
of its nondescendants in the network, given its immediate predecessors in the network. (We 
say X is a descendant of Y if there is a directed path from Y to X).  

• Second, a conditional probability table is given for each variable, describing the probability 
distribution for that variable given the values of its immediate predecessors.  
 

The joint probability for any de- sired assignment of values (yl, . . ., yn) to the tuple of network 
variables (YI . . . Yn) can be computed by the formula 
 
 
 
Parents (Yi) denotes the set of immediate predecessors of Yi in the net- work.  
 
Note the values of P (yi | Parents (yi)) are precisely the values stored in the conditional probability 
table associated with node yi. 
 

5c: Illustration of the above Bayesian network: 
Consider the node Campfire. The network nodes and arcs represent the assertion that Campfire is 
conditionally independent of its nondescendants Lightning and Thunder, given its immediate parents 
Storm and BusTourGroup. 
 
This means that once we know the value of the variables Storm and BusTourGroup, the variables 
Lightning and Thunder provide no additional information about Campfire.  
 
The right side of the figure shows the conditional probability table associated with the variable 
Campfire. The top left entry in this table, for example, expresses the assertion that  
 

P (Campfire = True | Storm = True, BusTourGroup = True) = 0.4 
 
Note this table provides only the conditional probability of CampFire given its parent variables Storm 
and BusTourGroup.  
 
The set of local conditional probability tables for all the variables, together with the set of 
conditional independence assumptions described by the network, describe the full joint probability 
distribution for the network. 
 

5d: Inference: 
We might wish to use a Bayesian network to infer the value of some target variable (e.g., ForestFire) 
given the observed values of the other variables. Given that we are dealing with random variables it 
will not generally be correct to assign the target variable a single determined value.  
 
What we really wish to infer is the probability distribution for the target variable, which specifies the 
probability that it will take on each of its possible values given the observed values of the other 
variables. This inference step can be straightforward if values for all of the other variables in the 
network are known exactly.  



 
In the more general case we want to find the probability distribution for some variable (e.g., 
ForestFire) given observed values for only a subset of the other variables (e.g., Thunder and 
BusTourGroup may be the only observed values available).  
 
 

5e: Steps for computing the probability of Target variable given the values of other 
variables 
 

Step 1: Define the Joint Probability Distribution 
A Bayesian network represents the joint probability distribution as a product of conditional 
probabilities: 
 
P(Storm, BusTourGroup, Lightning, Campfire, Thunder, ForestFire) = 
P(Storm) * P(BusTourGroup) * P(Lightning | Storm) * P(Campfire | Storm, BusTourGroup) * 
P(Thunder | Lightning) * P(ForestFire | Lightning, Campfire, Storm) 
 
Step 2: Apply Bayes’ Theorem 
The goal is to compute: 
P (ForestFire | Storm, BusTourGroup, Lightning, Campfire, Thunder)  
 
Using Bayes’ rule, 
  
 
evidence={Storm, BusTourGroup, Lightning, Campfire, Thunder}. 
 
Step 3: Expand Using Conditional Probabilities 
From the structure of the Bayesian network, express the probability of all variables: 
 
= > P(ForestFire, evidence) 
 

= P(Storm, BusTourGroup, Lightning, Campfire, Thunder, ForestFire)  
 

= P(Storm) * P(BusTourGroup) * P(Lightning | Storm) * P(Campfire | Storm, BusTourGroup) * 
P(Thunder | Lightning) * P(ForestFire | Lightning, Campfire, Storm) 
 
The denominator, P(evidence), is computed as: 
 

 
 
 

which requires summing over all possible values of ForestFire (True/False). 
 
Step 4: Normalize to Get Conditional Probability 
Once both the numerator and denominator are computed, the final probability is: 
 
 
 
This provides the required probability of ForestFire given values of all other variables. 


