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Bayesian Learning and Naive Bayes Classification

1 Introduction

Bayesian Learning is a fundamental approach in probabilistic modeling that allows us to determine the
probability of an outcome given a set of observed variables. This method is widely used in machine
learning, decision theory, and artificial intelligence due to its ability to incorporate prior knowledge and
update beliefs as new data become available.

The core objective of Bayesian Learning is to compute the posterior probability:

P (Y |X1, X2, . . . , Xn)

where Y is the target variable (e.g. pass/fail, spam/non-spam), and X1, X2, ..., Xn represents the
observed features. The ability to make probabilistic inferences using Bayes’ Theorem makes this approach
particularly powerful in scenarios where data are limited or uncertain.

1.1 Why Bayesian Learning?

To compute P (Y |X1, ..., Xn), consider the joint probability distribution of all variables. This distri-
bution captures the dependencies between all the features and the target variable.

Consider a dataset with n binary categorical attributes such as Gender, Work Hours, Economic
Status (Poor/Rich), etc. Each of the attributes has only 2 values. Then the probability distribution
can be represented as:

Gender Work Hours ... ... Economic Status Probability
Male more than 40 .... .... Rich (R) 0.1
Female less than 40 .... .... Poor (P) 0.15

If we have n binary features, the number of combinations of off-values needed to fill the table is 2n−1
values, which is computationally expensive.

1.2 Issues with the Direct Estimation

• Data Sparsity: Many feature combinations may not appear in the training data, making the
probability estimation unreliable.

• Exponential Growth of Parameters: Without simplifying assumptions, estimating 2n − 1
probabilities becomes infeasible for large n. For example, with 10 binary features, we need to have
1023 probability values.

To overcome these challenges, we turn to Bayesian parameter estimation techniques that use
prior knowledge to make probability estimation feasible.

2 Bayesian Inference and Conditional Independence

Now, let us see if we can reduce the values needed for a n-binary feature dataset using Bayes’ rule.

P (Y |X1, ..., Xn) =
P (Y )P (X1, ..., Xn|Y )

P (X1, ..., Xn)

P (Y |X1, ..., Xn) =
P (Y )P (X1, ..., Xn|Y )

P (Y = 1)P (X1, ..., Xn|Y = 1) + P (Y = 0)P (X1, ..., Xn|Y = 0)
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So, now we need 2n − 1 estimations for each for P (Y = 1), P (X1, ..., Xn|Y = 1), and P (Y = 0),
P (X1, ..., Xn|Y = 0). Then, two more estimations are combined, leading to a total estimations of
2(2n − 1) + 2 estimations.

Interestingly, applying Bayes’ rule initially increases the number of required estimations rather than
reducing them.

To simplify computations, we assume conditional independence between features given Y :

P (X1, ..., Xn|Y ) =

n∏
i=1

P (Xi|Y )

This assumption forms the basis of the Naive Bayes classifier, reducing the number of required
estimates from 2(2n − 1) + 2 to 2n+ 2.

2.1 Conditional Independence Breakdown

P (X1|X2, Y ) = P (X1|Y ) (1)

This implies that X1 and X2 are conditionally independent given Y , which can be represented as:

X1 ⊥ X2 | Y

We factorize the probabilities as below:

P (X1, X2|Y ) = P (X1|Y )P (X2|Y ) (2)

Using the definition of conditional probability,

P (X1, X2, Y ) = P (X1|Y )P (X2|Y )P (Y ) (3)

Dividing both sides by P (Y ):

P (X1, X2) =
P (X1|Y )P (X2|Y )P (Y )

P (Y )
(4)

Since P (Y ) cancels out in numerator and denominator:

P (X1, X2) = P (X1|Y )P (X2|Y ) (5)

3 Naive Bayes Classification - Solving Data Sparsity

Let us better understand this concept with an example.
Consider a classification problem where we want to predict whether a student will pass or fail based

on the following 3 attributes - Attendance (Poor(P)/Average(A)/High(H)), Reads (Y/N), and
Assignment Solving (Low(L)/Medium(M)/High(H)).

Using Naive Bayes, we compute:

P (+|A,N,M) =
P (+)× P (A|+)× P (N |+)× P (M |+)

P (M |+)
(6)

Expanding the denominator:

P (+) (P (A|+)P (N |+)P (M |+)) + P (−)P (A|−)P (N |−)P (M |−) (7)

3.1 Training Data Table

Attendance Reads Assignment Solving Grade
H Y M +
A N L -
A Y H +
P Y L -
P N H -
H N M +
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3.2 Test Case

We need to predict the grade for the following test case:

(A,N,M) (Attendance = A, Reading = N, Assignment Solving = M)

We use:

P (+) =
1

2
, P (−) =

1

2
(8)

P (A|+) =
P (A,+)

P (+)
=

1/6

1/2
=

1

3
(9)

P (N |+) =
1

2
, P (M |+) =

2

3
(10)

Similarly,

P (A|−) =
1

3
, P (N |−) =

2

3
, P (M |−) =

0

3
(11)

Thus, using these values, we can compute the following:

P (+|A,N,M) =
P (+)P (A|+)P (N |+)P (M |+)

P (A,N,M)
(12)

P (+|A,N,M) =
P (+)P (A|+)P (N |+)P (M |+)

P (+)P (A|+)P (N |+)P (M |+) + P (−)P (A|−)P (N |−)P (M |−)
(13)

P (+|A,N,M) =
(1/2).(1/3).(1/2).(2/3)

(1/2).(1/3).(1/2).(2/3) + (1/2).(1/3).(2/3).(0)
(14)

P (+|A,N,M) = 1 (15)

4 Decision Boundaries and Log-Linear Models

4.1 Decision Boundary in Naive Bayes

To classify an observation, we compare the posterior probabilities.

P (Y |X1, X2, ..., Xn)

P (Y |X1, ..., Xn)
≥ 1 (16)

Taking the natural logarithm:

ln

(
P (Y )

∏n
i=1 P (Xi|Y )

P (Y )
∏n

i=1 P (Xi|Y )

)
≥ 0 (17)

Rewriting:

lnP (Y )− lnP (Y ) +

n∑
i=1

ln

(
P (Xi|Y )

P (Xi|Y )

)
≥ 0 (18)

Since lnP (Y )− lnP (Y ) is a constant, we define:

C = lnP (Y )− lnP (Y ) (19)

Thus, the decision boundary is given by:

C +

n∑
i=1

ln

(
P (Xi|Y )

P (Xi|Y )

)
≥ 0 (20)
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4.2 Log-Linear Model Interpretation

This shows that the Naive Bayes classifier produces a log-linear model, meaning:

• Probabilities are transformed into log-space to form a linear decision boundary.

• When mapped back to the original probability space, the boundary can become non-linear.

4.3 Real-World Applications

Naive Bayes has been extensively researched in applications such as:

• Spam Filtering: The most common application of Bayes’ classifier is in spam filtering and text
classification. All our emails are all built on top of a Bayes’ classifier model

• Medical Image Diagnostics Cancer Research: Another application is to classify cancer status of a
person based on their scans like MRI.

5 Gaussian Naive Bayes for Continuous Features

• Up to this point, we have primarily dealt with discrete-valued features. However, many real-
world applications involve features that vary continuously over a range.

• To extend Naive Bayes classification to such cases, we assume that each feature follows a
specific probability distribution.

• The most common type of distribution is Gaussian (Normal) Distribution:

P (Xi|Y = k) =
1√
2πσ2

e−
(X−µ)2

2σ2 (21)

where:

– µ is the mean of the feature for class k

– σ2 is the variance of the feature for class k

• For predicting for a new data point, we just substitute the values of X for each of the features and
find the class which has highest probability

5.1 Classification Problem: Basketball Player Classification

• To demonstrate Gaussian Naive Bayes classification, consider a dataset where students are
described using two continuous features:

1. Height (H)

2. Marks (M)

• We want to classify whether a student is a basketball player (BB) or not

Using Bayes’ Theorem:

P (BB|H,M) =
P (H|BB)P (M |BB)P (BB)

P (H,M)
(22)

Expanding the denominator:

P (H,M) = P (H,M |BB)P (BB) + P (H,M |BB)P (BB) (23)

P (BB|H,M) =
P (H|BB)P (M |BB)P (BB)

P (H,M |BB)P (BB) + P (H,M |BB)P (BB)
(24)
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Figure 1: Gaussian Distributions and Decision Boundary for Basketball Player Classification

Alternatively, we can use the ratio:

P (BB)P (H|BB)P (M |BB)

P (BB)P (H|BB)P (M |BB)
(25)

• If the ratio is greater than 1, the student is classified as a basketball player (BB).

• Otherwise, the student is classified as not a basketball player BB.

5.2 Observations from the figure

The decision boundary and probability distributions for this classification problem can be
visualized as follows:

1. Gaussian Distributions for Marks and Height:

– Two Gaussian distributions exist for Marks, representing probabilities conditioned
on whether a student is a basketball player or not.

– Similarly, two Gaussian distributions exist for Height, representing conditional prob-
abilities given the class.

2. Formation of Concentric Regions:

– The combination of Height and Marks distributions results in a region of concentric
circles in the graph.

– These circles represent contours of equal probability for classifying a student as BB or
BB.

3. Decision Boundary:

– The classification boundary is depicted in violet.

– This boundary separates basketball players from non-basketball players based on
height and marks.

4. Elliptical Decision Regions:

– Depending on the mean and variance of Height and Marks distributions, the concentric
circles can deform into ellipses.

– This is because Gaussian distributions in two dimensions often lead to elliptical de-
cision boundaries rather than perfect circles.
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6 Key Takeaways

– Computational Efficiency: Naive Bayes significantly reduces computational complexity
from exponential to linear scale.

– Log-Linear Decision Boundaries: The classifier maps feature distributions into log-space,
forming a linear decision boundary in this transformed space.

– Gaussian Naive Bayes for Continuous Data: By assuming Gaussian distributions for
continuous features, the model generalizes well for real-world applications.

– Practical Applications: Naive Bayes is widely used in spam filtering, medical diagnostics,
and text classification due to its ability to handle uncertainty and sparse data effectively.
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