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Introduction: The Learning Problem 

Machine learning involves learning a function F: X → Y, where X is the input space (features) 

and Y is the output space (target values). If F is known, an algorithm can be directly 

designed; if unknown, machine learning techniques are used to approximate it. 

Algorithmic Approach Machine Learning Approach 

 
Xnew →           → Ynew 

 

    
Training: (X, Y) →          → g ≈ F 

 
Inference: Xnew →          → Ynew 

 

F is a function designed by us • L represents a learning algorithm 
that learns from data  

• g is the learned function, which 
approximates F 

  

Where to apply Machine Learning? 

1. Movie Recommendation System – Using machine learning, the system estimates the 

likelihood that a user will like an unseen movie and recommends it accordingly.  

2. Classification Problem: Logistic Regression – Predicts categorical outcomes like 

disease detection (yes/no) or email spam (spam/not spam).  

3. Regression Problem: Salary Prediction – Uses linear regression or neural networks to 

estimate salaries based on experience, education, and skills.  

4. Spam Filtering Using Naive Bayes – Classifies emails as spam or not using 

probability-based text analysis. 

How to apply Machine Learning? 

Machine learning is applied by training a model on data to recognize patterns and make 

predictions. In classification problems, a decision boundary is learned to separate different 

classes. 

𝑤𝑥1 + 𝑤𝑥2 + 𝑤3 = 0  

  

F L 

g 



When dealing with misclassified data points, we adjust the decision boundary in two ways: 

1. Shifting the Decision Boundary – Modifying w3 in the equation moves the 

boundary without changing its orientation. 

2. Rotating the Decision Boundary – Changing w1 and w2 alters the slope, rotating 

the boundary to better separate the data. 

Learning Process Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supervised machine learning aims to approximate an unknown target function using a 

learning process. Key components include: 

• Unknown Target Function (F)– Represents the true relationship between inputs X 

(features) and outputs Y(labels), which the model tries to approximate. 

• Training Data – Labeled examples used to train the model. 

• Hypothesis Set (H) – A collection of possible functions/models that could 

approximate F. 

• Learning Algorithm – Selects the best hypothesis h ∈ H by minimizing a loss function  

• Learned Function (g) – The final output of the algorithm that approximates F and 

makes predictions on unseen data. 

 

Unknown Target Function 

F: X → Y 

Training Data 

(X1,Y1), (X2,Y2),………(Xn,Yn) 

Hypothesis Set 

H = {h1, h2,….hm) 

Learning 

Algorithm 

Learned function 

g ≈ F 



Types of learning 

Machine learning is categorized based on how a model learns from data: 

• Supervised Learning – Trains on labeled data to map inputs to outputs. 

• Unsupervised Learning – Identifies patterns and structures in unlabeled data. 

• Semi-Supervised Learning – Combines labeled and unlabeled data for learning. 

• Reinforcement Learning – Learns through trial and error using rewards and 

penalties. 

 

 

 

 

Feasibility of Learning 

A key challenge in supervised learning is determining whether a function can be learned 

from a limited set of training examples while still generalizing well to unseen data. The 

Probably Approximately Correct (PAC) learning framework addresses this by establishing 

probabilistic bounds on how closely the chosen hypothesis approximates the true target 

function. 

This is mathematically analyzed using Hoeffding’s Inequality, which sets an upper bound on 

the likelihood that the empirical error (evaluated on training data) significantly deviates from 

the true error (calculated over the entire input distribution). 

Hoeffding’s Inequality 

Hoeffding’s inequality is a key result in probability theory that offers a statistical guarantee 

on how closely the training error Ein approximates the true generalization error Eout. It is 

formulated as: 

 

 

where: 

• Ein – Error measured on the training dataset (observed error). 

• Eout – Error on the entire population or unseen data (true error). 

• ϵ – Tolerance threshold, representing the allowed deviation between Ein and Eout. 

• N – Number of samples in the training dataset. 

• M – M is the number of hypotheses in the hypothesis set. 

Supervised Learning Unsupervised Learning 

Semi-Supervised Learning Reinforcement Learning 

𝑃(|𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡| > ∈) ≤ 2𝑀𝑒−2∈2𝑁 



As we increase the number of training examples (N), the chance of a big gap between 

training error (Ein) and true error (Eout) becomes smaller and smaller. This means that with 

enough data, a machine learning model can learn a function that works well on unseen data. 

In simple terms, if our model performs well on the training data, it is more likely to 

perform well on new data too—provided we have enough examples. Hoeffding’s 

Inequality mathematically supports this idea, showing that with more data, our training 

results become a reliable reflection of real-world performance. 

Application of Hoeffding’s Inequality: Marble selection problem 

Objective: To understand the relationship between training error (Ein) and true error (Eout) 

using Hoeffding’s Inequality. The key question is: How well does a model's performance on 

training data approximate its performance on unseen data? 

Experimental Setup: 

• A bin contains two types of marbles:  

o Shaded marbles: Incorrect 

predictions 

(misclassifications). 

o Unshaded marbles: Correct 

predictions. 

 
 

 

• A learner does not know the true 

proportion of shaded marbles but 

can draw a random sample to 

estimate it. 

 

• The analogy:  

o Bin → Overall data distribution. 

o Marbles → Data points. 

o Picking marbles → Selecting a training dataset. 

o Fraction of shaded marbles in sample → Observed training error (Ein). 

o Fraction of shaded marbles in bin → True generalization error (Eout). 

The question: How closely does the fraction of shaded marbles in the sample estimate the 

true fraction in the bin? 

  

h(xi) ≠ f(xi) 

h(xi) = f(xi) 

N Samples 



Application of Hoeffding’s Inequality: 

Hoeffding’s Inequality helps us understand how closely the observed training error (Ein) 

matches the true generalization error (Eout). 

The larger the sample size, the smaller the gap between Ein and Eout. 

Conclusion: 

• With a sufficiently large sample size, the observed training error (Ein) becomes a 

reliable estimate of the true error (Eout) with high probability.  

• There exists a trade-off between accuracy, confidence, and required sample size:  

1. Higher accuracy (lower ϵ) requires more samples. 

2. Higher confidence (lower δ) increases sample size. 

• This analysis supports the foundation of supervised learning: with enough data, we 

can generalize well from training to unseen data. 

Understanding dilation of bounds: Coin Flip Experiment 

Concept: Dilation of bounds refers to the widening of confidence intervals when multiple 

hypotheses are tested. This helps explain why testing many models increases the risk of false 

positives or overfitting. 

Case 1: Single Coin Flip Experiment 

• A fair coin is flipped 10 times. 

• Probability of getting all heads = 0.00098 (very low). 

Case 2: Multiple Coin Flip Experiment 

1. 1,000 coins are flipped, each 10 times. 

2. Probability that at least one coin gets all heads = 62.5% (much higher). 

Key Takeaways 

• With one hypothesis (single coin), extreme events are rare. 

• With many hypotheses (1,000 coins), extreme events are more likely to happen by 

chance. 

• In machine learning, testing too many models increases the risk of overfitting, as at 

least one model may fit the data just by luck rather than true patterns. 

 

  



Decision Tree Learning 

Decision tree learning is a supervised machine learning method that splits data into 

branches based on feature values, forming a tree-like structure to make predictions. It 

recursively partitions the dataset using criteria like Gini impurity or entropy to maximise 

information gain. 

Cricket Match Example: 

We wish to analyze how a decision tree can predict match outcomes using historical data 

from the Indian cricket team's matches. The dataset includes two main features: 

• Runs (R) categorized as Low, Medium, or High. 

• Wickets (W) categorized as Some (≤7 wickets lost) or Most (>7 wickets lost). 

By examining these features, we aim to classify whether the team won or lost a match. 

The scatter plot below illustrates the training data, where: 

• ‘+’ represents a win. 

• ‘−’ represents a loss. 

• The x-axis categorizes Runs (R) into Low (L), Medium (M), and High (H). 

• The y-axis categorizes Wickets (W) into Some (S) and Almost all (A). 

• The dashed lines indicate the decision boundaries. 

 

 

 

 

 

 

 

When building a decision tree, there are often multiple ways to split the data that lead to 

the same classification results. The main challenge is not only to create a tree that correctly 

classifies the data but also to identify the most optimal one among several valid options. 

A decision tree classifies data by recursively dividing it based on feature values until all 

instances in a region belong to the same class. However, the sequence of these splits is not 

predetermined—there can be different ways to structure the tree while still achieving 

accurate classification. 
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Decision Tree 1 Decision Tree 2 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 

 
 

 Average comparisions =  
1+3+3+2

4
 =  

9

4
  

 

Average comparisions =  
2+3+3+2+2

5
 =  

12

5
  

 

 

The average comparisons in Decision Tree 1 are lesser than Decision Tree 2, indicating that 

it’s the better option. However, we don’t need to compute this every time to decide the best 

split choice. We can do so using the concepts of entropy, the Gini Index, information gain, 

and Impurity Reduction. 

Measures of Impurity 

1. Entropy: 

• Introduced by Claude Shannon in information theory. It measures the uncertainty in 

a probability distribution. 

• For a binary classification problem (k=2, where the probabilities are p1 = p and  

p2=1 - p), entropy is defined as: 

𝐸 =  −(𝑝+ log2(𝑝+) + 𝑝− log2(𝑝−)) 

Behavior of Entropy: 

• If all samples belong to one class (p=0 or p=1), then: E(S)=0, (no uncertainty). 

• If classes are evenly split (p=0.5), then: E(S) = 1, (Max uncertainity) 

 

2. Gini Index 

• The Gini Index is a metric used in CART (Classification and Regression Trees) to 
measure impurity. It functions similarly to entropy in decision trees, as both are used 
to evaluate splits based on feature selection. However, their calculations differ 
significantly. 

• The Gini Impurity of a dataset after splitting can be determined using the following 
formula: 
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• In the case of binary classification (k = 2), where p is the probability of the positive 
class and 1−p represents the probability of the negative class, the formula simplifies 
to: 

• Gini Index is defined as: 
 

𝐺𝑖𝑛𝑖 = 1 − (𝑝2 + (1 − 𝑝)2) = 2𝑝(1 − 𝑝) 
 

• This simplified formula shows that Gini Impurity reaches its maximum when classes 
are equally distributed (p=0.5) and is minimized when all samples belong to a single 
class. 

Comparison between Entropy and Gini: 

Entropy Gini Index 

 

 

 

 

Gini Impurity is often preferred for its computational efficiency over entropy. This is 

primarily because its calculation does not involve logarithmic functions, which require 

more processing power. As a result, Gini Impurity tends to be faster and is commonly 

used when selecting the best features for decision tree construction. 

Information Gain and Impurity Reduction 

1. Information Gain 

Information Gain (IG) is a concept in decision trees for determining which feature best splits 

the data at each step. It measures how much uncertainty (entropy) is reduced by making a 

particular split. 

Entropy of Set S: 

𝐻(𝑆) =  −(𝑝+ log2(𝑝+) + 𝑝− log2(𝑝−))  

Entropy after a split: 



𝐻(𝑆, 𝑋) =
|𝑆1|

|𝑆|
𝐻(𝑆1) +  

|𝑆2|

|𝑆|
𝐻(𝑆2)  

Information gain (IG): 

𝐼𝐺(𝑆, 𝑋) = 𝐻(𝑆) − 𝐻(𝑆, 𝑋) 

How to use Information gain in decision trees? 

A higher Information Gain indicates a more useful feature for splitting. So at every node, we 

choose the feature with highest information gain. 

2. Gini Impurity Reduction 

Gini Impurity Reduction is another concept in decision trees for determining which feature 

best splits the data at each step. It uses Gini Index instead of entropy. 

Gini Index of a set S: 

𝐺(𝑆) = 1 − (𝑝2 + (1 − 𝑝)2) = 2𝑝(1 − 𝑝) 

Gini Index after a split: 

𝐺(𝑆, 𝑋) =
|𝑆1|

|𝑆|
𝐺(𝑆1) + 

|𝑆2|

|𝑆|
𝐺(𝑆2) 

Gini Impurity Reduction: 

∆𝐺(𝑆, 𝑋) = 𝐺(𝑆) − 𝐺(𝑆, 𝑋) 

How to use Gini Impurity Reduction in decision trees? 

A higher Gini Impurity Reduction indicates a more useful feature for splitting. So, at every 

node, we choose the feature with highest impurity reduction. 

Guiding Principle for model selection 

1. Principle of Occam’s Razor 

Occam’s Razor states that among competing explanations, the simplest one that fits the 

data is preferred. In the context of decision trees, this translates to favoring smaller and 

shallower trees that achieve high accuracy. Such trees minimize the risk of overfitting and 

improve generalization to unseen data. 

2. Greedy Approach in Tree Construction 

Decision trees are built using a greedy algorithm that selects the attribute with the highest 

information gain or highest impurity reduction at each step. This approach optimizes each 

decision locally, without revisiting previous splits. 

  



3. Impact of Inductive Bias 

Since decision trees do not backtrack once a split is made, they develop an inductive bias 

toward locally optimal decisions. While this often leads to effective models, it also means 

that an early suboptimal split cannot be corrected later in the process, potentially affecting 

overall performance. 

Avoiding Overfitting in Decision Trees 

Decision trees can overfit due to noise and missing data, making them overly complex and 

poor at generalization. Reduced-Error Pruning (REP) helps control this by simplifying the 

tree while maintaining accuracy. 

Causes of Overfitting: 

Noise in Data 

• Incorrect labels – Misclassified data points 

• Outliers – Extreme values 

• Random variations – Inconsistent patterns 

 Missing Data 

• Leads to biased splits and unnecessary complexity 

Reduced-Error Pruning (REP): 

REP removes unnecessary branches to prevent overfitting: 

1. Train & Validate – Split data for validation 

2. Check Leaf Nodes – Evaluate if removal simplifies the tree 

3. Prune if Accuracy Holds – Replace branches with majority class if accuracy is 

unchanged 

4. Repeat Until No More Gains 

Bayesian Learning 

In a typical classification problem, the goal is to approximate an unknown function g using a 

learned function f, where: 

𝑔 ≈ 𝑓: 𝑋 → 𝑌 

Here, X represents the input features, and Y represents the output classes (+1 or -1). 

Different machine learning approaches approximate this function differently. 

Probabilistic (Bayesian) Approach 

The Bayesian approach relies on posterior probabilities, estimating the probability of each 

class given the input features using Bayes’ Theorem: 



𝑃(𝑦|𝑋) =  
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
 

Instead of directly assigning a class label, classification is based on the likelihood ratio: 

𝑃(𝑦 = 1|𝑋1,……,𝑋𝑛)

𝑃(𝑦 = 0|𝑋1,……,𝑋𝑛)
 

• If the ratio > 1, the instance is classified as +1 (Class 1). 

• If the ratio < 1, the instance is classified as -1 (Class 0). 

This approach incorporates uncertainty, making it useful in cases with limited data or noisy 

environments. 

Joint Probability Distribution 

A Joint Probability Distribution Table (JPDT) represents the probabilities of different 

combinations of random variables occurring together. It is a structured way to describe the 

relationships between multiple random variables in a probabilistic model. 

JPDT simplifies probability calculations by allowing direct lookup and conditional probability 

computation. 

Example: JPDT for two Binary Variables (X, Y): 

X Y P(X, Y) 

0 0 0.2 

0 1 0.3 

1 0 0.1 

1 1 0.4 

 

To find P(Y = 1 | X = 1): 

𝑃(𝑌 = 1|𝑋 = 1) =  
𝑃(𝑋 = 1, 𝑌 = 1)

𝑃(𝑋 = 1)
 

=
0.4

0.1 +  0.4
= 0.8  

JPDT simplifies probability calculations by allowing direct lookup and conditional probability 

computation. 

Issue of data sparsity 

For n attributes, a Joint Probability Distribution Table (JPDT) requires 2n +1 entries. This 

grows exponentially, making storage and estimation impractical. 

Example: With 100 attributes, we need 2100 entries—far beyond feasible storage or data 

availability, leading to data sparsity.  



Solutions to Address This Issue: 

1. Smart Estimation – Efficiently estimate probabilities even when data is sparse. 

2. Smart Representation – Store and structure the JPDT efficiently to reduce memory 

and computation costs. 

These approaches help manage large-scale probabilistic models while ensuring accurate 

predictions.  

Estimation 

1. Maximum Likelihood Estimation (MLE) 

MLE is a technique used to estimate the parameter θ of a probability distribution by 

maximizing the likelihood function P(Data∣θ). This means finding the parameter 

value that makes the observed data most probable. 

In Bayesian learning, MLE does not consider prior knowledge about θ; it relies only 

on the observed data, making it a purely data-driven approach. 

𝜃𝑀𝐿𝐸 = arg 𝑚𝑎𝑥𝜃𝑃(𝐷𝑎𝑡𝑎|𝜃) 

For example, MLE for coin toss problem can be found using the above formula to be: 

𝜃 =  
𝛼𝐻

𝛼𝐻 + 𝛼𝑇 
 

where: 

• 𝛼𝐻 represents the number of observed heads 

• 𝛼𝑇 represents the observed tails 

• 𝜃 represents the probability of getting heads in a single coin toss 

  

2. Maximum A Posteriori (MAP) 

 

MAP estimation is a Bayesian approach for estimating a parameter θ by considering 

both observed data and prior knowledge. It finds the most likely value of θ by 

maximizing the posterior probability: 

 

𝜃𝑀𝐴𝑃 = arg 𝑚𝑎𝑥𝜃𝑃(𝜃|𝐷𝑎𝑡𝑎) 

𝜃𝑀𝐴𝑃 = arg 𝑚𝑎𝑥𝜃(
𝑃(𝐷𝑎𝑡𝑎|𝜃)𝑃(𝜃)

𝑃(𝐷𝑎𝑡𝑎)
) 

Since P(Data) is constant for all θ,  



𝜃𝑀𝐴𝑃 =  arg 𝑚𝑎𝑥𝜃 𝑃(𝐷𝑎𝑡𝑎|𝜃)𝑃(𝜃) 

 

Unlike Maximum Likelihood Estimation (MLE), which only maximizes P(Data∣θ), MAP 

also incorporates the prior P(θ). This makes MAP particularly effective when data is 

limited or noisy, as it balances data-driven learning with prior information, reducing 

instability in small datasets. 

For example, MAP for coin toss problem can be found using the above formula to be: 

𝜃 =  
𝛼𝐻 + 𝐻

𝛼𝐻 + 𝛼𝑇 + 𝐻 + 𝑇 
 

where: 

• 𝛼𝐻 represents the number of observed heads,  

• 𝛼𝑇 represents the observed tails 

• 𝜃 represents the probability of getting heads in a single coin toss 

• H represents the number of observed heads 

• T represents the number of observed tails. 

 

 

 

 


