
FADML: Module II

Weekly Summary

Name: Niranjan Herwadkar Dates: 27-Feb-25 to 06-Mar-25 (Week 1)

Introduction: The Learning Problem

Machine learning involves learning a function F: X → Y, where X is the input space (features)

and Y is the output space (target values). If F is known, an algorithm can be directly

designed; if unknown, machine learning techniques are used to approximate it.

Algorithmic Approach Machine Learning Approach

Xnew → → Ynew

Training: (X, Y) → → g ≈ F

Inference: Xnew → → Ynew

F is a function designed by us • L represents a learning algorithm
that learns from data

• g is the learned function, which
approximates F

Where to apply Machine Learning?

1. Movie Recommendation System – Using machine learning, the system estimates the

likelihood that a user will like an unseen movie and recommends it accordingly.

2. Classification Problem: Logistic Regression – Predicts categorical outcomes like

disease detection (yes/no) or email spam (spam/not spam).

3. Regression Problem: Salary Prediction – Uses linear regression or neural networks to

estimate salaries based on experience, education, and skills.

4. Spam Filtering Using Naive Bayes – Classifies emails as spam or not using

probability-based text analysis.

How to apply Machine Learning?

Machine learning is applied by training a model on data to recognize patterns and make

predictions. In classification problems, a decision boundary is learned to separate different

classes.

𝑤𝑥1 + 𝑤𝑥2 + 𝑤3 = 0

F L

g

When dealing with misclassified data points, we adjust the decision boundary in two ways:

1. Shifting the Decision Boundary – Modifying w3 in the equation moves the

boundary without changing its orientation.

2. Rotating the Decision Boundary – Changing w1 and w2 alters the slope, rotating

the boundary to better separate the data.

Learning Process Diagram

Supervised machine learning aims to approximate an unknown target function using a

learning process. Key components include:

• Unknown Target Function (F)– Represents the true relationship between inputs X

(features) and outputs Y(labels), which the model tries to approximate.

• Training Data – Labeled examples used to train the model.

• Hypothesis Set (H) – A collection of possible functions/models that could

approximate F.

• Learning Algorithm – Selects the best hypothesis h ∈ H by minimizing a loss function

• Learned Function (g) – The final output of the algorithm that approximates F and

makes predictions on unseen data.

Unknown Target Function

F: X → Y

Training Data

(X1,Y1), (X2,Y2),………(Xn,Yn)

Hypothesis Set

H = {h1, h2,….hm)

Learning

Algorithm

Learned function

g ≈ F

Types of learning

Machine learning is categorized based on how a model learns from data:

• Supervised Learning – Trains on labeled data to map inputs to outputs.

• Unsupervised Learning – Identifies patterns and structures in unlabeled data.

• Semi-Supervised Learning – Combines labeled and unlabeled data for learning.

• Reinforcement Learning – Learns through trial and error using rewards and

penalties.

Feasibility of Learning

A key challenge in supervised learning is determining whether a function can be learned

from a limited set of training examples while still generalizing well to unseen data. The

Probably Approximately Correct (PAC) learning framework addresses this by establishing

probabilistic bounds on how closely the chosen hypothesis approximates the true target

function.

This is mathematically analyzed using Hoeffding’s Inequality, which sets an upper bound on

the likelihood that the empirical error (evaluated on training data) significantly deviates from

the true error (calculated over the entire input distribution).

Hoeffding’s Inequality

Hoeffding’s inequality is a key result in probability theory that offers a statistical guarantee

on how closely the training error Ein approximates the true generalization error Eout. It is

formulated as:

where:

• Ein – Error measured on the training dataset (observed error).

• Eout – Error on the entire population or unseen data (true error).

• ϵ – Tolerance threshold, representing the allowed deviation between Ein and Eout.

• N – Number of samples in the training dataset.

• M – M is the number of hypotheses in the hypothesis set.

Supervised Learning Unsupervised Learning

Semi-Supervised Learning Reinforcement Learning

𝑃(|𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡| > ∈) ≤ 2𝑀𝑒−2∈2𝑁

As we increase the number of training examples (N), the chance of a big gap between

training error (Ein) and true error (Eout) becomes smaller and smaller. This means that with

enough data, a machine learning model can learn a function that works well on unseen data.

In simple terms, if our model performs well on the training data, it is more likely to

perform well on new data too—provided we have enough examples. Hoeffding’s

Inequality mathematically supports this idea, showing that with more data, our training

results become a reliable reflection of real-world performance.

Application of Hoeffding’s Inequality: Marble selection problem

Objective: To understand the relationship between training error (Ein) and true error (Eout)

using Hoeffding’s Inequality. The key question is: How well does a model's performance on

training data approximate its performance on unseen data?

Experimental Setup:

• A bin contains two types of marbles:

o Shaded marbles: Incorrect

predictions

(misclassifications).

o Unshaded marbles: Correct

predictions.

• A learner does not know the true

proportion of shaded marbles but

can draw a random sample to

estimate it.

• The analogy:

o Bin → Overall data distribution.

o Marbles → Data points.

o Picking marbles → Selecting a training dataset.

o Fraction of shaded marbles in sample → Observed training error (Ein).

o Fraction of shaded marbles in bin → True generalization error (Eout).

The question: How closely does the fraction of shaded marbles in the sample estimate the

true fraction in the bin?

h(xi) ≠ f(xi)

h(xi) = f(xi)

N Samples

Application of Hoeffding’s Inequality:

Hoeffding’s Inequality helps us understand how closely the observed training error (Ein)

matches the true generalization error (Eout).

The larger the sample size, the smaller the gap between Ein and Eout.

Conclusion:

• With a sufficiently large sample size, the observed training error (Ein) becomes a

reliable estimate of the true error (Eout) with high probability.

• There exists a trade-off between accuracy, confidence, and required sample size:

1. Higher accuracy (lower ϵ) requires more samples.

2. Higher confidence (lower δ) increases sample size.

• This analysis supports the foundation of supervised learning: with enough data, we

can generalize well from training to unseen data.

Understanding dilation of bounds: Coin Flip Experiment

Concept: Dilation of bounds refers to the widening of confidence intervals when multiple

hypotheses are tested. This helps explain why testing many models increases the risk of false

positives or overfitting.

Case 1: Single Coin Flip Experiment

• A fair coin is flipped 10 times.

• Probability of getting all heads = 0.00098 (very low).

Case 2: Multiple Coin Flip Experiment

1. 1,000 coins are flipped, each 10 times.

2. Probability that at least one coin gets all heads = 62.5% (much higher).

Key Takeaways

• With one hypothesis (single coin), extreme events are rare.

• With many hypotheses (1,000 coins), extreme events are more likely to happen by

chance.

• In machine learning, testing too many models increases the risk of overfitting, as at

least one model may fit the data just by luck rather than true patterns.

Decision Tree Learning

Decision tree learning is a supervised machine learning method that splits data into

branches based on feature values, forming a tree-like structure to make predictions. It

recursively partitions the dataset using criteria like Gini impurity or entropy to maximise

information gain.

Cricket Match Example:

We wish to analyze how a decision tree can predict match outcomes using historical data

from the Indian cricket team's matches. The dataset includes two main features:

• Runs (R) categorized as Low, Medium, or High.

• Wickets (W) categorized as Some (≤7 wickets lost) or Most (>7 wickets lost).

By examining these features, we aim to classify whether the team won or lost a match.

The scatter plot below illustrates the training data, where:

• ‘+’ represents a win.

• ‘−’ represents a loss.

• The x-axis categorizes Runs (R) into Low (L), Medium (M), and High (H).

• The y-axis categorizes Wickets (W) into Some (S) and Almost all (A).

• The dashed lines indicate the decision boundaries.

When building a decision tree, there are often multiple ways to split the data that lead to

the same classification results. The main challenge is not only to create a tree that correctly

classifies the data but also to identify the most optimal one among several valid options.

A decision tree classifies data by recursively dividing it based on feature values until all

instances in a region belong to the same class. However, the sequence of these splits is not

predetermined—there can be different ways to structure the tree while still achieving

accurate classification.

7

150 300

A

S

L M H

Decision Tree 1 Decision Tree 2

 Average comparisions =
1+3+3+2

4
 =

9

4

Average comparisions =
2+3+3+2+2

5
 =

12

5

The average comparisons in Decision Tree 1 are lesser than Decision Tree 2, indicating that

it’s the better option. However, we don’t need to compute this every time to decide the best

split choice. We can do so using the concepts of entropy, the Gini Index, information gain,

and Impurity Reduction.

Measures of Impurity

1. Entropy:

• Introduced by Claude Shannon in information theory. It measures the uncertainty in

a probability distribution.

• For a binary classification problem (k=2, where the probabilities are p1 = p and

p2=1 - p), entropy is defined as:

𝐸 = −(𝑝+ log2(𝑝+) + 𝑝− log2(𝑝−))

Behavior of Entropy:

• If all samples belong to one class (p=0 or p=1), then: E(S)=0, (no uncertainty).

• If classes are evenly split (p=0.5), then: E(S) = 1, (Max uncertainity)

2. Gini Index

• The Gini Index is a metric used in CART (Classification and Regression Trees) to
measure impurity. It functions similarly to entropy in decision trees, as both are used
to evaluate splits based on feature selection. However, their calculations differ
significantly.

• The Gini Impurity of a dataset after splitting can be determined using the following
formula:

R=H

W=M

R=M

W=M

R=H

R=M

R=H

R=M

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No No

No

• In the case of binary classification (k = 2), where p is the probability of the positive
class and 1−p represents the probability of the negative class, the formula simplifies
to:

• Gini Index is defined as:

𝐺𝑖𝑛𝑖 = 1 − (𝑝2 + (1 − 𝑝)2) = 2𝑝(1 − 𝑝)

• This simplified formula shows that Gini Impurity reaches its maximum when classes
are equally distributed (p=0.5) and is minimized when all samples belong to a single
class.

Comparison between Entropy and Gini:

Entropy Gini Index

Gini Impurity is often preferred for its computational efficiency over entropy. This is

primarily because its calculation does not involve logarithmic functions, which require

more processing power. As a result, Gini Impurity tends to be faster and is commonly

used when selecting the best features for decision tree construction.

Information Gain and Impurity Reduction

1. Information Gain

Information Gain (IG) is a concept in decision trees for determining which feature best splits

the data at each step. It measures how much uncertainty (entropy) is reduced by making a

particular split.

Entropy of Set S:

𝐻(𝑆) = −(𝑝+ log2(𝑝+) + 𝑝− log2(𝑝−))

Entropy after a split:

𝐻(𝑆, 𝑋) =
|𝑆1|

|𝑆|
𝐻(𝑆1) +

|𝑆2|

|𝑆|
𝐻(𝑆2)

Information gain (IG):

𝐼𝐺(𝑆, 𝑋) = 𝐻(𝑆) − 𝐻(𝑆, 𝑋)

How to use Information gain in decision trees?

A higher Information Gain indicates a more useful feature for splitting. So at every node, we

choose the feature with highest information gain.

2. Gini Impurity Reduction

Gini Impurity Reduction is another concept in decision trees for determining which feature

best splits the data at each step. It uses Gini Index instead of entropy.

Gini Index of a set S:

𝐺(𝑆) = 1 − (𝑝2 + (1 − 𝑝)2) = 2𝑝(1 − 𝑝)

Gini Index after a split:

𝐺(𝑆, 𝑋) =
|𝑆1|

|𝑆|
𝐺(𝑆1) +

|𝑆2|

|𝑆|
𝐺(𝑆2)

Gini Impurity Reduction:

∆𝐺(𝑆, 𝑋) = 𝐺(𝑆) − 𝐺(𝑆, 𝑋)

How to use Gini Impurity Reduction in decision trees?

A higher Gini Impurity Reduction indicates a more useful feature for splitting. So, at every

node, we choose the feature with highest impurity reduction.

Guiding Principle for model selection

1. Principle of Occam’s Razor

Occam’s Razor states that among competing explanations, the simplest one that fits the

data is preferred. In the context of decision trees, this translates to favoring smaller and

shallower trees that achieve high accuracy. Such trees minimize the risk of overfitting and

improve generalization to unseen data.

2. Greedy Approach in Tree Construction

Decision trees are built using a greedy algorithm that selects the attribute with the highest

information gain or highest impurity reduction at each step. This approach optimizes each

decision locally, without revisiting previous splits.

3. Impact of Inductive Bias

Since decision trees do not backtrack once a split is made, they develop an inductive bias

toward locally optimal decisions. While this often leads to effective models, it also means

that an early suboptimal split cannot be corrected later in the process, potentially affecting

overall performance.

Avoiding Overfitting in Decision Trees

Decision trees can overfit due to noise and missing data, making them overly complex and

poor at generalization. Reduced-Error Pruning (REP) helps control this by simplifying the

tree while maintaining accuracy.

Causes of Overfitting:

Noise in Data

• Incorrect labels – Misclassified data points

• Outliers – Extreme values

• Random variations – Inconsistent patterns

 Missing Data

• Leads to biased splits and unnecessary complexity

Reduced-Error Pruning (REP):

REP removes unnecessary branches to prevent overfitting:

1. Train & Validate – Split data for validation

2. Check Leaf Nodes – Evaluate if removal simplifies the tree

3. Prune if Accuracy Holds – Replace branches with majority class if accuracy is

unchanged

4. Repeat Until No More Gains

Bayesian Learning

In a typical classification problem, the goal is to approximate an unknown function g using a

learned function f, where:

𝑔 ≈ 𝑓: 𝑋 → 𝑌

Here, X represents the input features, and Y represents the output classes (+1 or -1).

Different machine learning approaches approximate this function differently.

Probabilistic (Bayesian) Approach

The Bayesian approach relies on posterior probabilities, estimating the probability of each

class given the input features using Bayes’ Theorem:

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)

Instead of directly assigning a class label, classification is based on the likelihood ratio:

𝑃(𝑦 = 1|𝑋1,……,𝑋𝑛)

𝑃(𝑦 = 0|𝑋1,……,𝑋𝑛)

• If the ratio > 1, the instance is classified as +1 (Class 1).

• If the ratio < 1, the instance is classified as -1 (Class 0).

This approach incorporates uncertainty, making it useful in cases with limited data or noisy

environments.

Joint Probability Distribution

A Joint Probability Distribution Table (JPDT) represents the probabilities of different

combinations of random variables occurring together. It is a structured way to describe the

relationships between multiple random variables in a probabilistic model.

JPDT simplifies probability calculations by allowing direct lookup and conditional probability

computation.

Example: JPDT for two Binary Variables (X, Y):

X Y P(X, Y)

0 0 0.2

0 1 0.3

1 0 0.1

1 1 0.4

To find P(Y = 1 | X = 1):

𝑃(𝑌 = 1|𝑋 = 1) =
𝑃(𝑋 = 1, 𝑌 = 1)

𝑃(𝑋 = 1)

=
0.4

0.1 + 0.4
= 0.8

JPDT simplifies probability calculations by allowing direct lookup and conditional probability

computation.

Issue of data sparsity

For n attributes, a Joint Probability Distribution Table (JPDT) requires 2n +1 entries. This

grows exponentially, making storage and estimation impractical.

Example: With 100 attributes, we need 2100 entries—far beyond feasible storage or data

availability, leading to data sparsity.

Solutions to Address This Issue:

1. Smart Estimation – Efficiently estimate probabilities even when data is sparse.

2. Smart Representation – Store and structure the JPDT efficiently to reduce memory

and computation costs.

These approaches help manage large-scale probabilistic models while ensuring accurate

predictions.

Estimation

1. Maximum Likelihood Estimation (MLE)

MLE is a technique used to estimate the parameter θ of a probability distribution by

maximizing the likelihood function P(Data∣θ). This means finding the parameter

value that makes the observed data most probable.

In Bayesian learning, MLE does not consider prior knowledge about θ; it relies only

on the observed data, making it a purely data-driven approach.

𝜃𝑀𝐿𝐸 = arg 𝑚𝑎𝑥𝜃𝑃(𝐷𝑎𝑡𝑎|𝜃)

For example, MLE for coin toss problem can be found using the above formula to be:

𝜃 =
𝛼𝐻

𝛼𝐻 + 𝛼𝑇

where:

• 𝛼𝐻 represents the number of observed heads

• 𝛼𝑇 represents the observed tails

• 𝜃 represents the probability of getting heads in a single coin toss

2. Maximum A Posteriori (MAP)

MAP estimation is a Bayesian approach for estimating a parameter θ by considering

both observed data and prior knowledge. It finds the most likely value of θ by

maximizing the posterior probability:

𝜃𝑀𝐴𝑃 = arg 𝑚𝑎𝑥𝜃𝑃(𝜃|𝐷𝑎𝑡𝑎)

𝜃𝑀𝐴𝑃 = arg 𝑚𝑎𝑥𝜃(
𝑃(𝐷𝑎𝑡𝑎|𝜃)𝑃(𝜃)

𝑃(𝐷𝑎𝑡𝑎)
)

Since P(Data) is constant for all θ,

𝜃𝑀𝐴𝑃 = arg 𝑚𝑎𝑥𝜃 𝑃(𝐷𝑎𝑡𝑎|𝜃)𝑃(𝜃)

Unlike Maximum Likelihood Estimation (MLE), which only maximizes P(Data∣θ), MAP

also incorporates the prior P(θ). This makes MAP particularly effective when data is

limited or noisy, as it balances data-driven learning with prior information, reducing

instability in small datasets.

For example, MAP for coin toss problem can be found using the above formula to be:

𝜃 =
𝛼𝐻 + 𝐻

𝛼𝐻 + 𝛼𝑇 + 𝐻 + 𝑇

where:

• 𝛼𝐻 represents the number of observed heads,

• 𝛼𝑇 represents the observed tails

• 𝜃 represents the probability of getting heads in a single coin toss

• H represents the number of observed heads

• T represents the number of observed tails.

