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1 Decision Tree Learning (RECAP)

1.1 Measures of Impurity:

Consider a Binary classification problem, with two discrete classes, positive and negative. Following are
the measures of impurity.

1.1.1 Entropy

The entropy of a dataset S is defined as:

E(S) = −p + log2 p + − p - log2 p -

where:

• S is the dataset.

• p + is the probability of an instance belonging to the positive class.

• p - is the probability of an instance belonging to the negative class.

1.1.2 Gini Index

The Gini Index of a dataset S is defined as:

G(S) = 1− p2
+
− p2

-

where:

• S is the dataset.

• p + is the probability of an instance belonging to the positive class.

• p - is the probability of an instance belonging to the negative class.

1.2 Information Gain and Gini impurity

The Information Gain and Gini Impurity for an attribute A is given by:

Information Gain(S,A) = E(S)−
∑
v∈V

|Sv|
|S|

E(Sv)

Gini Impurity(S,A) = G(S)−
∑
v∈V

|Sv|
|S|

G(Sv)

where:

• IGE(S,A) is the information gain using entropy.

• IGG(S,A) is the information gain using Gini index.
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• E(S) is the entropy of the dataset before the split.

• G(S) is the Gini index of the dataset before the split.

• Sv is the subset where attribute A has value v.

• |Sv|
|S| represents the proportion of Sv in S.

• E(Sv) is the entropy of subset Sv.

• G(Sv) is the Gini index of subset Sv.

In decision trees, Information Gain (IG) uses Entropy to decide the best attribute for splitting
a node. Information Gain measures how much uncertainty(entropy) is reduced after a split, select-
ing the attribute that provides the highest reduction in disorder. Gini Index evaluates impurity by
selecting the attribute that results in the purest child nodes. While Entropy is more precise, Gini is
computationally faster, and both aim to create the most informative splits for better classification.

1.3 Classification Boundary in Decision Trees (Visualization)

We use measures of impurity such Entropy or Gini index and then the Information gain or Gini impurity
criteria build a Decision Tree.
Following is a visual depiction of classification using decision trees.
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Disjoint Axis Parallel Rectangles

Each rectangle is one path
in the Decision Tree

Figure 1: Disjoint Axis-Parallel Rectangles in Decision Tree Splitting

In decision tree classification, disjoint axis-parallel rectangles represent regions in the feature space
where the decision tree partitions data based on learned rules. Each rectangle corresponds to a leaf
node in the decision tree, containing instances that share the same predicted class. These rectangles are
axis-aligned, meaning splits occur along feature axes (X1, X2, etc.), creating non-overlapping decision
regions. This structure allows decision trees to model non-linear decision boundaries effectively. The
diagram illustrates how two disjoint rectangles capture positive (+) class regions, while the remaining
space is assigned to the negative (-) class, demonstrating how decision trees recursively divide the feature
space.

2 Probabilistic (Bayesian) Approach to a Learning Problem

For a typical learning problem, we approximate the unknown function g using f. For example, consider
below for the two class classification problem with classes +1 and -1 and attributes X.

g ≈ f : X → Y

+1

−1
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The probabilistic (Bayesian) approach to solving a learning problem relies on estimating
posterior probabilities of different classes given the input features using Bayes’ theorem. This is
contrary to Decision Tree learning where we have a fixed output instead of probabilities. Classification
is performed based on the likelihood ratio:

P (y = 1 | X1, . . . , Xn)

P (y = 0 | X1, . . . , Xn)
> 1 or < 1

meaning the instance is classified into the class with the higher posterior probability. This
approach incorporates uncertainty and is particularly useful in cases of limited data or noisy envi-
ronments.

2.1 Baye’s Rule

P (A | B) =
P (A ∩B)

P (B)

P (A | B) =
P (B | A)P (A)

P (B)

Generalization of Baye’s Rule:

P (Y | X1, . . . , Xn) =
P (Y )P (X1, . . . , Xn | Y )

P (X1, . . . , Xn)

P (Y | X1, . . . , Xn) =
P (Y )P (X1, . . . , Xn | Y )

P (Y )P (X1, . . . , Xn | Y ) + P (Ȳ )P (X1, . . . , Xn | Ȳ )

Note the following rules:

P (A = 1 | X) = 1− P (A = 0 | X)

P (X | A = 1) ̸= 1− P (X | A = 0)

2.2 Joint Probability Distribution Table

A joint distribution table (JPDT) represents the probabilities of different combinations of
random variables occurring together. It helps in computing conditional probabilities using Bayes’
theorem and is essential for learning probabilistic models. For any kind of outcome we could just
do lookup in the table in order to predict\estimate. Refer the example table below.

Gender (X1) Hours Worked (X2) Poor/Rich (Y) Prob
M > 40 R 0.15
M > 40 P 0.2
M < 40 R 0.1
M < 40 P 0.3
F < 40 R 0.1
F > 40 P 0.05
F < 40 R 0.05
F < 40 P 0.05

3



Consider now, the example below to get the probability of ’Rich’ if ’Gender’ is female and ’Hours
Worked’ is less than 40-

P (R | F,< 40) =
P (R,F,< 40)

P (F,< 40)

=
0.05

0.1
=

1

2

2.3 Issue of Data Sparsity

If the number of attributes is n, there will be 2n + 1 entries in the joint distribution table that we need
for estimation/prediction. This number grows exponentially. For example, if we have 100 attributes, the
number of entries in the table is approximately 2100, and it is unlikely that we will have all the data,
leading to the problem of data sparsity.

We use the following approaches to tackle this problem:

1. Smart Estimation: refers to efficiently estimating probabilities in a joint distribution table, espe-
cially when data is sparse.

2. Smart Representation: focuses on storing and structuring the joint probability table efficiently,
reducing memory and computational costs.

2.4 Estimation

2.4.1 Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) is a method for estimating the parameter θ of a probability
distribution by maximizing the likelihood function P (Data | θ). In the context of Bayesian learning,
MLE does not incorporate prior knowledge; it solely relies on observed data.

θMLE = argmax
θ

P (Data | θ)

Where:

• θMLE : The Maximum Likelihood Estimate, which is the parameter value θ that maximizes
the probability of the observed data.

• P (Data | θ) : The likelihood function, which quantifies how well the parameter θ explains the
observed data.

• argmaxθ : Represents the value of θ that gives the highest likelihood.

Derivation of MLE for a simple coin toss problem:

∂

∂θ
[θαH (1− θ)αT ] = 0

⇒ ∂

∂θ
[ln (θαH (1− θ)αT )] = 0

⇒ ∂

∂θ
[αH ln θ + αT ln(1− θ)] = 0

⇒ αH

θ
− αT

1− θ
= 0

⇒ (1− θ)αH = θαT

⇒ θ̂MLE =
αH

αH + αT
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⇒ θ̂MLE =
αH

αH + αT

where αH represents the number of observed heads, αT represents the number of observed tails, and
θ represents the probability of getting heads in a single coin toss.

2.4.2 Maximum A Posteriori (MAP)

Maximum A Posteriori (MAP) estimation is a Bayesian approach to parameter estimation that
finds the most probable value of a parameter θ given both the observed data and prior knowledge.
Unlike Maximum Likelihood Estimation (MLE), which maximizes only the likelihood function
P (Data | θ), MAP also incorporates a prior distribution P (θ).

MAP estimation is particularly useful when data is limited or noisy. In contrast to MLE, which
can be unstable with small datasets, MAP provides a balance between data-driven learning and
prior knowledge.

θMAP = argmax
θ

P (θ | Data)

Using Bayes’ theorem, we expand it as:

θMAP = argmax
θ

P (Data | θ)P (θ)

P (Data)

Since P (Data) is constant for all θ, we simplify to:

θMAP = argmax
θ

P (Data | θ)P (θ)

Where:

• θMAP is the Maximum A Posteriori (MAP) estimate of the parameter θ.

• P (θ | Data) is the posterior distribution, representing the probability of θ given the observed
data.

• P (Data | θ) is the likelihood function, measuring how well θ explains the data.

• P (θ) is the prior probability, representing our belief about θ before observing the data.

• P (Data) is the marginal likelihood (or evidence), a normalizing constant that ensures the pos-
terior is a valid probability distribution.

The MAP estimate for the probability of heads in a simple coin toss problem θ in a Bernoulli/Binomial
setting with a Beta prior is given by:

θMAP =
αH +H

αH + αT +H + T

Derivation:

∂

∂θ

[
θαH (1− θ)αT

(
θβH (1− θ)βT

B(βH , βT )

)]
= 0

⇒ ∂

∂θ

[
θαH+βH (1− θ)αT+βT

]
= 0

Expanding further leads to θMAP above.

Where:

• θMAP : The Maximum A Posteriori estimate of θ, incorporating prior information.

• H : The number of observed heads.

• T : The number of observed tails.

• αH : The prior count (pseudo-count) of heads.

• αT : The prior count (pseudo-count) of tails.
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