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1. Introduction 

This executive summary presents a detailed overview of fundamental concepts of 

information theory, decision trees, and probability theory. The discussion covers 

information gain, decision tree learning, Occam’s razor, inductive bias, and Bayesian 

Probability principles.  

2. Gini Index 

The Gini Index is another measure of impurity, used in CART (Classification and 

Regression Trees). The internal working of Gini impurity is also somewhat like the 

working of entropy in the Decision Tree. In the Decision Tree algorithm, both are used 

for building the tree by splitting as per the appropriate features but there is quite a 

difference in the computation of both methods. Gini Impurity of features after splitting 

can be calculated by using this formula. For a classification problem with k classes, if 

𝑝𝑖 is the probability class i (with ∑ 𝑝𝑖
𝑘
𝑖=1 = 1), then the Gini Index is defined as: 

Gini = 1 - ∑ 𝑝𝑖
2𝑘

𝑖=1
 

For the special case of binary classification (k=2), let p be the probability of the 

positive class and 1 − p the probability of the negative class. The formula simplifies 

to: 

Gini = 1 – (𝑝2 + (1 − 𝑝)2) = 2𝑝(1 − 𝑝) 

3. Entropy vs Gini Impurity: 

The internal workings of both methods are similar, as they are used for computing the 

impurity of features after each split. However, Gini Impurity is generally more 

computationally efficient than entropy. The graph of entropy increases up to 1 and 

then starts decreasing, while Gini Impurity only goes up to 0.5 before decreasing, thus 

requiring less computational power. The range of entropy is from 0 to 1, whereas the 

range of Gini Impurity is from 0 to 0.5. However, the main reason for Gini Impurity’s 

computational advantage is that it does not involve logarithmic functions, which are 

more computationally intensive. Therefore, Gini Impurity is often considered more 

efficient compared to entropy for selecting the best features. 

4. Graph of Gini Index for Binary Classification: 

Below is the function Gini(p) = 2p (1 − p) for p ∈ [0, 1]. 



 

Comparison of Impurity Measures for a binary classification problem 

5. Guiding Principle for Model Selection: 

A key principle in model selection is Occam’s Razor, which suggests that the simplest 

explanation fitting the data is usually the best. In decision trees, this means favouring 

smaller, shallower trees that maintain high accuracy, reducing the risk of overfitting 

and enhancing generalization. 

The method used for tree construction—choosing the attribute with the highest 

information gain or lowest impurity—follows a greedy approach, making decisions 

based on immediate gains without reconsideration. Once a split is made, the algorithm 

does not backtrack to revise it, leading to an inductive bias toward locally optimal 

decisions. While this often results in effective trees, it also means that a suboptimal 

early split cannot be corrected later in the process. 

6. Impact of Noise & Missing Data on Decision Trees: 

Decision trees are powerful models for classification and regression, but they are 

sensitive to noise and missing data. If not handled properly, these issues can lead to 

overly complex trees that overfit training data, resulting in poor generalization. 

Reduced-error pruning (REP) helps simplify the tree while maintaining accuracy. 

6.1 Impact of Noise in Decision Trees: 



Noise in data can take many forms, including: 

• Incorrect labels: Some data points are misclassified. 

• Outliers: Extreme values that do not represent the general trend. 

• Random variations: Data inconsistencies that do not follow patterns. 

Example: Decision Tree Overfitting Due to Noise: 

Let’s say we are classifying students as "Pass" or "Fail" based on study hours 

and sleep hours. 

With noise, some failing students are mislabelled as passing, and vice versa. A 

deep tree grows to fit these noisy labels rather than general trends. 

Overfitted Tree (With Noise): 

        Study Hours? 

         /       \ 

      Yes        No 

      /           \ 

  Sleep?         Extra Activities? 

  /     \         /          \ 

Fail    Pass   Pass         Fail   

Problems: 

• The tree grows too deep, trying to fit every small fluctuation. 

• Some branches exist only because of noise, making the model unreliable. 

6.2 Impact of Missing Data in Decision Trees: 

If missing data is ignored, decision trees: 

• May fail to split correctly, leading to biased trees. 

• Can become overly complex, compensating for gaps in data. 

6.3 Reduced-Error Pruning (REP): 

REP is a technique to simplify a tree by removing unnecessary branches without 

reducing validation accuracy. 

Steps in REP: 



• Split Data: Train on one part, validate on another. 

• Start at the Leaves: Examine leaf nodes to see if removing them reduces 

complexity without reducing accuracy. 

• Prune If Necessary: Replace branches with majority class if accuracy does not 

drop. 

• Repeat Until No Further Improvement. 

7. Conclusion 

Decision trees are highly effective for classification and regression tasks, but their 

performance can be compromised by noise and missing data, leading to overfitting 

and poor generalization. Noise (such as incorrect labels and outliers) causes 

unnecessary splits, while missing values can lead to biased decisions or incorrect 

splits. 

To address these challenges, Reduced-Error Pruning (REP) provides a structured 

approach to simplify decision trees while preserving accuracy. By systematically 

removing branches that do not improve validation performance, REP ensures that the 

model remains interpretable and generalizes well to unseen data. 

Ultimately, combining pruning techniques with robust handling of missing data leads 

to more reliable and efficient decision tree models. 

8. Probability Theory: 

Random Variable: A random variable is a numerical value assigned to the outcomes 

of a random experiment. It represents uncertainty and is used in probability and 

statistics to model real-world randomness. 

In probability theory, the probability of an event occurring is calculated as: 

P(A) = Number of favourable outcomes/Total number of possible outcomes 

For the specific case where X represents gender in a sample space, the probability of 

selecting a female (X=Female) is: 

P(X=Female) = Number of females in the sample space/Total number of individuals 

in sample space. 

 



𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) 

If events are independent then, 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ⋅ 𝑃(𝐵) 

8.1 Bayes Rule: Bayes’ Rule (or Bayes' Theorem) describes how to update our beliefs 

about an event based on new evidence. 

Formula for Bayes’ Rule: 

𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵) ⋅ 𝑃(𝐵) 

𝑃(𝐵 ∩ 𝐴) = 𝑃(𝐵|𝐴) ⋅ 𝑃(𝐴) 

𝑷(𝑨|𝑩) =
𝑷(𝑩|𝑨) ⋅ 𝑷(𝑨)

𝑷(𝑩)
 

8.2 Correlation vs Causality in Bayes’ Rule: Bayes' Rule is a probabilistic 

framework that helps update beliefs based on evidence. However, it does not 

establish causality—it only shows correlation between events. Understanding the 

difference is crucial in interpreting results correctly. 

8.3 Chain Rule: For any set of events 𝐴1,𝐴2, … , 𝐴𝑛, the probability of their joint 

occurrence can be expressed as: 

𝑷(𝑨𝟏, 𝑨𝟐, … … 𝑨𝒏) = 𝑷(𝑨𝟏) ⋅ 𝑷(𝑨𝟐|𝑨𝟏) ⋅ 𝑷(𝑨𝟑|𝑨𝟐𝑨𝟏) … 𝑷(𝑨𝒏|𝑨𝟏𝑨𝟐 … 𝑨𝒏−𝟏) 

8.3 Joint Probability Distribution Table: A probability table is used to represent 

different event combinations, where the probabilities sum to 1. 

 A B C Probability 

A 1 0 0 0.2 

B 0 1 0 0.1 

C 1 1 1 0.4 

8.4 Challenges with Data Sparsity:  

• With 100 data points, a full probability table would require 2𝛬100 =
10𝛬30 entries, making it infeasible to compute or store.  

• Sparse data makes it difficult to estimate probabilities accurately, as there are 

too many possible combinations and insufficient observations. 



8.4 Approaches to Handle Sparsity 

• Smart Estimation: Use techniques like smoothing to adjust probability 

estimates when data is sparse. 

• Smarter Table Representation: Rather than storing full probability tables, use 

Bayesian methods and factorized representations to model dependencies 

efficiently. 

• Bayesian Learning: Incorporates prior knowledge and observed data to refine 

probability estimates, reducing overfitting and improving generalization. 

8.5 Conclusion: Managing joint probability distributions is essential in 

probabilistic modelling, but data sparsity presents significant challenges. When 

datasets are too large to store explicitly or too sparse to estimate probabilities 

reliably, smart estimation techniques like smoothing and efficient table 

representations become crucial. Bayesian learning provides a powerful framework 

for refining probability estimates by incorporating prior knowledge, ensuring more 

accurate predictions even with limited data. 


