Scribe

Moneesh B
March 4th, 2025

1 Supervised Learning Framework

1.1 Understanding the Learning Framework

Supervised learning is a type of machine learning where a model is trained on labeled data. The objective
is to learn an unknown target function f : X — Y, which maps input features X to output labels Y.
This function is unknown because we do not have explicit knowledge of how the inputs are transformed
into outputs; instead, we rely on learning from a dataset of training examples.

1.2 Key Components
e Input space X: Represents the set of all possible input values.
e Output space Y: Represents the set of all possible output values.

e Training examples: The dataset consists of a finite set of paired observations:

(leyl)a (X27Y2)7 RN (XnaYn)

where each X; is an input feature vector and each Y; is the corresponding output label.

1.3 Learning Process

The goal of supervised learning is to generalize from training examples to make accurate predictions on
unseen data. This process involves:

1. Receiving training examples: The learning algorithm is given labeled data consisting of feature
vectors and their corresponding outputs.

2. Selecting a hypothesis: The algorithm chooses a function h from a predefined hypothesis set
H, which contains all the possible models the algorithm can consider:

H= {hlv h27 (a3 hn}

In the case of decision trees, these hypotheses are represented as Boolean formulas that define the
splitting criteria.

3. Choosing the final hypothesis: The model that best fits the training data is selected as the
final hypothesis h*, which serves as an approximation of the unknown target function f.

1.4 Feasibility of Learning

A fundamental question in supervised learning is whether it is possible to learn a function that generalizes
well from a finite number of training examples. The Probably Approximately Correct (PAC)
learning framework provides a probabilistic bound on how well the chosen hypothesis approximates
the target function.

This is quantified using Hoeffding’s Inequality, which provides an upper bound on the probability
that the empirical error (measured on the training data) significantly differs from the true error (measured
on the entire distribution of possible inputs):

P[|En(9) — Eout(9)] > ¢ < 2me™2"
where:

e FEi,(g) is the in-sample/training error of hypothesis g.

Eout(g) is the true error of g on out of sample/unseen data.

€ is the error threshold.

m is the number of hypotheses in the hypothesis set.

n is the number of training examples.

The bound shows that as the number of training examples n increases, the probability of a large
difference between training error and true error decreases exponentially. This provides a theoretical
foundation for why supervised learning works under suitable conditions, reinforcing the idea that with
sufficient data, a good approximation of the target function can be learned. If we can handle the

in-sample errors well, the out of sample error takes care of itself according to Hoeffding’s
Inequality.

Supervised Learning Process

Unknown target f: X —Y

Training Examples (X1,Y7), ..., (X,,Y,)

Hypothesis Set H = {hq, ha, ..., hy,} —> Learning Algorithm Final Hypothesis

2 Decision Tree

Hypothesis Set: Boolean Expressions
Learning Algorithm: Decision Tree (ID3)

Training Examples: Cricket Match Outcomes
+ + - - + + + Win (+)
- Loss()
: : : : : : @
e @ }
- - - - + *

Ln;w Medium H\éh
Runs (R)

Most

Wickets (W)

Boolean Expression

| (R=H)V (~(R=H) A (W = M) A~(R = M)) |

Decision trees are a widely used method for making structured decisions based on historical data. In
this section, we explore how a decision tree can classify match outcomes based on past data from the
Indian cricket team’s matches. The dataset consists of two key features:

e Runs (R) categorized into Low, Medium, High.
o Wickets (W) categorized into Some (< 7 wickets lost) and Most (> 7 wickets lost).

By analyzing these two features, we aim to determine whether the team won or lost the match.
The scatter plot below represents the training data, where:

e Each + symbol represents a win.

Each — symbol represents a loss.

e The x-axis divides Runs (R) into Low, Medium, and High categories.

The y-axis divides Wickets (W) into Some and Most categories.

The dashed lines indicate the decision boundaries, helping visualize how different regions of the
feature space correspond to wins and losses.

When constructing a decision tree, there can be multiple ways to split the data that result in the same
classification of outcomes. The key challenge is not just to find a decision tree that correctly classifies
the data but to determine the best possible tree among the many valid options.

A decision tree works by recursively splitting the dataset based on feature values until all points in
a region belong to the same class. However, the order in which we make these splits is not fixed—there
can be multiple ways to arrange the tree that still correctly classify the data.

Decision Tree #1 For an arbitrary point, average
comparisons to decide:

1+34+34+2 9

4 4

This is computationally easier, so should
be preferred.

For an arbitrary point, average
comparisons to decide:

243+3+24+2 12
- i

Above, we present two potential decision trees that classify training data correctly. The first tree tends
to be shallower on average, while the second tree may have a different structure that impacts its average
comparisons.

Choosing the Best Tree:

While average comparisons are one way to gauge computational efficiency, a more rigorous approach
to selecting the best attribute splits involves looking at entropy, the Gini index, and the corresponding
information gain. By computing these metrics at each step, we can systematically determine which
attribute should be chosen first, then second, and so on. This helps us build a tree that balances both
depth and predictive accuracy.

3 Shannon Entropy

Shannon Entropy, introduced by Claude Shannon, measures the average uncertainty or information
content in a random variable. In the context of decision trees, if a set S has class labels with probabilities

P1,D2,- - -, Dk, the entropy E(S) is given by:

k
E(S) = — Zpi logy (p:)-

For a binary classification (where k = 2 and p; = p, po = 1 — p), the entropy simplifies to:
E(p) = —plogy(p) — (1 —p) logy(1 —p).

The plot below shows how E(p) varies for p from 0 to 1, peaking at p = 0.5.

E(p)
1

Figure 1: Plot of Shannon Entropy F(p) for a binary distribution (p € [0, 1]).

4 Comparing the two trees

4.1 Entropy of the Dataset

In a binary classification problem, the entropy for a node (or branch) is given by

E=— <p+ logs(py) +p— logg(p_)>,

where p; and p_ are the proportions of positive and negative instances, respectively. For example, if
the dataset is perfectly balanced (i.e., p = p— = 0.5), then

Ehase = 1 bit.

When an attribute is used to split the dataset, it is partitioned into subsets. Suppose the dataset

is split into two subsets: one with N; examples and the other with Ny examples (with N = N; + N»).

Each subset will have its own entropy, say F7 and E5. The overall entropy after the split is computed
as the weighted average of these entropies:

N Ny

Esplit = 7E1 +

Es.
N N2

Here, the weights % and % represent the fraction of examples in each subset.

The information gain (IG) from the split is the reduction in entropy, and is calculated as:
IG = Ebase - Esplit-

A higher information gain indicates that the split has effectively reduced uncertainty, making it more
useful for classification.

This procedure of computing the entropy for each node, weighting the entropies of the splits, and
calculating the information gain is repeated at every stage of the decision tree construction until the
data is perfectly classified or no further improvement can be achieved.

4.2 Base Entropy of the Dataset

Suppose our entire training set has an equal number of positive (+) and negative (—) examples. That
means py = p_ = % Hence, the base entropy Eya.se of the full dataset is

B = —(%loga 3 + $logy) = —(5x (~1)+ 4 x (=1)) = 1bit.

We will use Fhase = 1 as the starting entropy to measure information gain.

4.3 Decision Tree #1 Entropy
The first split is on the attribute R.
e Left branch (R = H): This branch yields a pure positive outcome (denoted by +). Hence,
P =1, p(-)=0 = B =—(1-logy(1) +0-1ogy(0)) = 0.

e Right branch (R # H): In this branch (which continues with W = M), the subsequent outcomes
are:

— One outcome yields + (from one of the leaves of the split on R = M).
— Two outcomes yield — (one directly from W = M and one from the other branch of R = M).

Thus, the class probabilities are
(D=7 p)=1
p R p s
and the entropy for the right branch is

1 1 3 3
Eright = - (3 IOgQ 1 + Z log2 4> ~ 0.978 bits.

Assuming that the branch probabilities correspond to the number of outcomes (1 outcome from the
left branch and 3 from the right branch, totaling 4 outcomes), the weights are:

1 2
Wieft = 3» Wri =5
left 3 ght 3
Therefore, the overall entropy after the first split is:
1 2
Esplit = 3 -0+ 3 0.9183 ~ 0.6122 bits.

Information Gain (IG) for Tree #1.
IG1 = Evase — Eqpiit = 1.0 — 0.6122 = 0.3878 bits (approx.).

4.4 Decision Tree #2 Entropy
For Decision Tree #2, the first split is on the attribute W.
e Branch 1: In this branch, the outcomes (after a subsequent split on R) are:

— Two outcomes yield +.
— One outcome yields —.

Thus, the class probabilities are:

and the entropy is

2 2 1. 1 .
B - (3 logs > + 3 logs 3) ~ 0.9183 bits.

e Branch 2: In this branch, the outcomes are:

— One outcome yields +.
— Two outcomes yield —.

Hence,

and the entropy is

112, 2 .
By — - (3 logs 5 + 2 log 3) ~ 0.9183 bits.

Since each branch has equal weight (w; = we = %), the overall entropy after the first split is:

1 1 1 1
Egpiiv = §E1 + §E2 = 5(0.9183) + 5(0.9183) = 0.9183 bits.

Information Gain (IG) for Tree #2.

IG2 = Evase — Egprit = 1.0 — 0.9183 = 0.0817 bits (approx.).

Comparison

Since IG; ~ 0.3878 bits is greater than IGy ~ 0.0817 bits, the first split on R (Tree #1) provides a
larger reduction in entropy than the first split on W (Tree #2). Therefore, based on information gain,
Decision Tree #1 is preferable at this stage.

Conclusion

The process of computing entropy and information gain, as demonstrated above for the first split, must
be repeated at every stage of the decision tree construction. At each node, the attribute that provides
the highest information gain is chosen for splitting, and the corresponding entropy is computed for the
resulting branches. This recursive procedure continues until every record is correctly classified (i.e., until
the nodes become pure) or until no further improvement can be achieved by additional splits.

This approach is the foundation of the ID3 algorithm developed by Ross Quinlan in 1987, which
builds the complete decision tree by iteratively selecting the most informative attribute at each stage.
In doing so, the algorithm effectively reduces uncertainty in the data, resulting in a model that classifies
the records with increasing precision at each level.

5 Gini Index

The Gini index is an impurity measure used in decision trees. For a classification problem with k classes,
if p; is the probability of class ¢ (with Ele p; = 1), then the Gini index is defined as:

k

Gini = 1-) p}.

=1

For the special case of binary classification (k = 2), let p be the probability of the positive class and
1 — p the probability of the negative class. The formula simplifies to:

Gini(p) = 1— (p2+(1 *p)z) = 2p(1—p).

Advantages over Entropy

One key advantage of the Gini index over entropy is its computational simplicity. Entropy involves
logarithmic calculations, while the Gini index is computed using only basic arithmetic (squaring and
subtraction). This makes the Gini index faster to compute, which can be especially beneficial when
handling large datasets.

Graph of the Gini Index for Binary Classification
Below is the function Gini(p) = 2p(1 — p) for p € [0, 1].

Gini Index for Binary Classification
0.5 T

Gini Index
o
w

T

|

o
o
T
L

0.1} .

p

Figure 2: Gini Index as a function of p for binary classification.

6 Conclusion and Final Remarks

A guiding principle in model selection is Occam’s Razor, which states that the simplest hypothesis that
explains the data is generally preferable. In the context of decision trees, this translates to preferring
smaller (shallower) trees that still achieve high accuracy, thereby avoiding overfitting and improving
generalization.

Notably, the process we described—selecting the attribute that yields the highest information gain
(or lowest impurity)—is inherently greedy or best-first. Once a split is chosen, the algorithm does not
backtrack to change it later, introducing an inductive bias toward splits that locally reduce entropy or
Gini index the most. While this often leads to effective trees in practice, it also means that if an early
split is suboptimal, there is no mechanism to revisit and correct it.

