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The Learning Framework :  

 

This diagram represents a fundamental process in machine learning. Here’s a breakdown of its 

components: 

1. Unknown Target Function f : X → Y :This represents the true function mapping input X 

to output Y. However, this function is unknown and needs to be approximated. 

2. Training Examples (X1, Y1), (X2, Y2),.........., (XN,YN) : These are the data points collected, 

consisting of input-output pairs. The goal is to learn a function that generalizes well from 

these examples. 

3. Hypothesis Set H = { h1, h2,....., hM } : This represents the set of possible functions 

(hypotheses) the learning algorithm can consider. The choice of hypothesis set depends on the 

model used (e.g., linear regression, decision trees, neural networks). 

4. Learning Algorithm :The core of machine learning, where an algorithm selects the best 

hypothesis from H using training examples. This selection is often based on minimizing a loss 

function. 

5. Final Hypothesis : The output of the learning algorithm is a function ggg that serves as an 

approximation of the true function f. The goal is for g to generalize well to unseen data. 

Understanding Generalization Through 

Hoeffding’s Inequality 

1. Introduction 



Machine learning models aim to generalize well from training data to unseen examples. To 

understand this concept, we examine an analogy involving marble selection from a bin. This analogy 

helps us explore the relationship between training error and true error using Hoeffding’s inequality, a 

fundamental result in probability theory. 

The key question we aim to answer is: 

How well does the performance of a model on training data approximate its 

performance on unseen data? 

Through this experiment, we establish that with a sufficiently large sample size, training error reliably 

estimates true error with high probability. 

2. Experimental Setup: The Marble Selection Analogy 

We consider a bin filled with marbles of two types: 

● Shaded marbles (representing incorrect predictions or misclassifications by a hypothesis). 

● Unshaded marbles (representing correct predictions). 

A learner does not know the total proportion of shaded marbles in the bin but can draw a random 

sample of marbles to estimate it. The goal is to determine how well this sample-based estimate 

approximates the true fraction of shaded marbles in the entire bin. 

Key elements of the analogy: 

● The bin represents the overall data distribution. 

● Each marble represents a data point. 

● Picking marbles corresponds to drawing a training dataset. 

● The fraction of shaded marbles in the sample represents the observed training error Ein. 

● The fraction of shaded marbles in the bin represents the true generalization error Eout. 

The fundamental question becomes: 

If we take a random sample of marbles, how close is the fraction of shaded marbles in 

our sample to the true fraction in the bin? 

3. Theoretical Foundation: Hoeffding’s Inequality 

Hoeffding’s inequality is a fundamental result in probability theory that provides a   statistical 

guarantee about how well training error Ein approximates the true generalization error Eout. It is 

expressed as: 

𝑃(∣ 𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡 ∣> 𝜖) ≤ 2𝑒−2𝜖2𝑁 

where: 

● Ein = Error on the training dataset (observed error) 



● Eout = Error on the entire population or unseen data (true error) 

● ϵ = Tolerance threshold (how much deviation we allow between Ein and Eout) 

● N = Number of samples (size of the training dataset) 

What Does This Inequality Tell Us? 

● With a large enough sample size (N), the probability that Ein deviates significantly from 

Eout becomes very small. 

○ This means that if we train a model on a large enough dataset, its performance on the 

test data (generalization ability) will be close to its performance on the training data. 

● Exponentially decreasing bound: 

○ The probability of a large deviation decreases exponentially with N. 

○ For example, if we double the sample size, the probability of bad generalization 

shrinks exponentially. 

○ This justifies why having more data improves model generalization. 

● Independent of the learning algorithm: 

○ Hoeffding’s inequality applies to any learning algorithm and any hypothesis class. 

○ It only depends on the number of samples and does not assume anything about the 

data distribution. 

● Key Assumption: The samples are independent and drawn from the same distribution 

(i.i.d. data). 

○ If the training data is biased or not representative of the real-world distribution, 

Hoeffding’s bound might not hold. 

Who Defines ϵ? 

1. The User (or Analyst): 

○ In a learning scenario, ϵ is chosen based on how precise we want our empirical 

estimate Ein to be. 

○ A smaller ϵ means we demand a very tight generalization bound, which requires a 

larger N. 

○ A larger ϵ allows more deviation but needs fewer samples to satisfy the inequality. 

2. The Problem's Requirements: 

○ If the problem requires a highly accurate model, a small ϵ is necessary. 

○ If approximate learning is acceptable, a larger ϵ might be used. 

3. Theoretical Analysis: 

○ In PAC (Probably Approximately Correct) Learning, ϵ is often chosen to bound the 

generalization error within an acceptable range (e.g., “we want the true error to be 

within 5% of the empirical error with high probability”). 

○ A typical choice in statistical learning is to set ϵ based on confidence requirements 

(e.g., setting 𝛿 =  2𝑒−2𝜖2𝑁and solving for ϵ in terms of δ and N).  

 𝛿 =  2𝑒−2𝜖2𝑁 

 

Taking natural log on both sides, 

𝑙𝑛(𝛿) = 𝑙𝑛(2) -2𝜖N𝑙𝑛(𝑒) 



∴ 𝜖 =  √𝑙𝑛(2
𝛿
)

2𝑁
 

Interpretation 

● This formula gives the value of ϵ for a given confidence level δ\deltaδ and sample size N. 

● If you want a high confidence (i.e., very small δ), then ln(2/δ) grows, making ϵ larger. 

● If you increase the number of samples N, then ϵ decreases, meaning that Ein and Eout 

are likely to be closer. 

Example 

Let’s say: 

● N=1000 (1000 training examples) 

● Confidence 1−δ=0.95 (i.e. δ=0.05) 

Compute ϵ: 

 𝜖 =  √
𝑙𝑛( 2

0.05
)

2(1000)
 

 𝜖 = 0.043 

This means with 95% confidence, the difference between empirical and true error is at most 4.3%. 

4. Application in the Experimental Setup 

In the marble selection problem, Ein represents the fraction of red marbles in the random sample, 

while Eout represents the true fraction of red marbles in the entire jar. The goal is to ensure that Ein is a 

good estimate of Eout with high confidence. 

To control the probability of deviation, we set a confidence level 1−δ, 

where δ is the probability of failure. Setting 

𝜖 =  √𝑙𝑛(2
𝛿
)

2𝑁
  and rearranging the terms we get, 

𝑁 =  
𝑙𝑛(2/𝛿)

2𝜖2
 

 For instance, if we want to estimate Eout within ϵ=0.05 with 95% confidence (δ=0.05), we 

calculate: 



 𝑁 =  
𝑙𝑛(2/0.05)

2(0.05)2
 ≈ 738 

Thus, we need at least 738 samples to ensure that Ein is within 5% of Eout with 95% confidence. 

If we reduce ϵ to 1% (more precise estimation), N increases significantly to around 18,400. Similarly, 

increasing the confidence level (reducing δ) also increases N. This shows the trade-off between 

accuracy, confidence, and sample size when estimating an unknown probability. 

However, in practice, we don’t evaluate just one hypothesis—we search through multiple hypotheses 

and select the best one based on Ein. This selection introduces an additional risk:  

“the more hypotheses we check, the higher the chance of selecting one that fits the sample 

well but generalizes poorly.” 

So how do we take this into account? 

 

Modified Hoeffding’s Inequality with M Hypotheses : 

When we choose a hypothesis by minimizing Ein, we must consider the worst case over all M 

hypotheses. Using the union bound, the probability that at least one hypothesis deviates significantly 

from its true error is: 

Union Bound : 

 The union bound states that for any finite set of events A1,A2,A3,.....AM the probability that at 

least one of them occurs is at most the sum of their individual probabilities: 

 𝑃(𝐴1 ∪  𝐴2  ∪  𝐴3  ∪. . . . . . . . .∪  𝐴𝑀)  ≤  ∑𝑀
𝑖=1 𝑃(𝐴𝑖)  

We can use this property to prove modified hoeffding’s inequality to prove M hypotheses, that is :  

 𝑃(ℎ ∈ 𝐻 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∣ 𝐸𝑖𝑛(ℎ) − 𝐸𝑜𝑢𝑡(ℎ) ∣> 𝜖) ≤ 2𝑀𝑒−2𝜖2𝑁 

This shows that increasing the number of hypotheses M increases the probability of picking a 

misleading hypothesis, i.e., one where Ein is low but Eout is high. 

Choosing h such that Ein(h)=0 :  

 “If we select a hypothesis where Ein(h) = 0, it means the hypothesis perfectly fits the training 

data. But does that guarantee Eout(h) = 0?” 

Not necessarily! 

 

From the modified bound: 



𝑃(|𝐸𝑜𝑢𝑡(ℎ) ∣> 𝜖) ≤ 2𝑀𝑒−2𝜖2𝑁 

 

For small N, even if Ein=0, there’s a nonzero chance that Eout is still large. This happens in 

overfitting, where the hypothesis memorizes the training set but fails to generalize. 

Key takeaways from this : 

1. More hypotheses M increase the risk of choosing a misleading hypothesis. 

2. Even if Ein = 0, Eout may not be small due to limited data. 

3. To control generalization error, we should balance the number of hypotheses and sample size 

N. 

4. Regularization and model complexity control help mitigate overfitting. 

Coin Flip Experiment for understanding dilation of bounds: 

In probability and machine learning, dilation of bounds refers to the widening of confidence intervals 

or probability bounds when multiple hypotheses are tested. This phenomenon is crucial in 

understanding why testing many models increases the risk of false positives or overfitting. 

Case 1 : 

Suppose you flip a fair coin (P(Heads)=0.5) N times(for eg, N = 10) 

We ask : What is the probability that all heads occur? 

 𝑃(𝑎𝑙𝑙 ℎ𝑒𝑎𝑑𝑠) = (0.5)10 ≈  0.00098 

Case 2 :  

Instead of flipping one coin, we flip 1,000 different coins. 

Each coin is flipped N times (eg N = 10). 

We ask: What is the probability that at least one of these 1,000 coins lands all heads? 

 The probability of one coin getting all heads in 10 flips: 

  𝑃(𝑎𝑙𝑙 ℎ𝑒𝑎𝑑𝑠) = (0.5)10 ≈  0.00098 

 Now, for 1,000 coins, the probability that at least one of them lands all heads: 

  𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑎𝑙𝑙 − ℎ𝑒𝑎𝑑𝑠 ) = 1 − (1 − (0.5)10)1000 ≈ 0.625 

So, there is a 62.5% chance that at least one of the 1,000 coins will land all heads just by random 

chance. 

Key Takeaway: 



● With a single hypothesis (one coin), the probability of an extreme event (all heads) is very 

low. 

● With multiple hypotheses (1,000 coins), the probability of an extreme event happening in at 

least one of them is much higher. 

● This demonstrates why testing many hypotheses in machine learning increases the risk of 

overfitting. 

 

Aspect First Experiment (Hoeffding’s 

Bound) 

Second Experiment 

(Hypothesis Selection) 

What is tested? How well does a sample 

estimate the true probability? 

What is the probability of 

seeing an extreme outcome? 

Key finding More samples (NNN) → 
better approximation 

More hypotheses → higher 
risk of finding something that 
fits by chance 

Machine learning link More training data improves 

generalization 

Testing too many hypotheses 

can lead to overfitting 

Example in ML A well-trained model 

generalizes well to test data 

A model with too many 

parameters might fit training 

noise 

 


